6.已知函數(shù)f(x)=xlnx,過點(diǎn)A(-$\frac{1}{{e}^{2}}$,0)作函數(shù)y=f(x)圖象的切線,則切線的方程為x+y+$\frac{1}{{e}^{2}}$=0.

分析 設(shè)出切點(diǎn)(m,n),求得導(dǎo)數(shù),可得切線的斜率和切線方程,代入點(diǎn)A,設(shè)f(m)=me2+1+lnm,運(yùn)用單調(diào)性,解方程可得m,進(jìn)而得到切線的方程.

解答 解:設(shè)切點(diǎn)為(m,n),
函數(shù)f(x)=xlnx的導(dǎo)數(shù)為f′(x)=lnx+1,
可得切線的斜率為1+lnm,
切線的方程為y-mlnm=(1+lnm)(x-m),
代入點(diǎn)A(-$\frac{1}{{e}^{2}}$,0),可得
-mlnm=(1+lnm)(-$\frac{1}{{e}^{2}}$-m),
化為me2+1+lnm=0,(*)
設(shè)f(m)=me2+1+lnm,f′(m)=e2+$\frac{1}{m}$>0,f(m)遞增,
由f($\frac{1}{{e}^{2}}$)=0,可得方程(*)的解為m=$\frac{1}{{e}^{2}}$,
則切線的方程為x+y+$\frac{1}{{e}^{2}}$=0.
故答案為:x+y+$\frac{1}{{e}^{2}}$=0.

點(diǎn)評 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的方程,考查導(dǎo)數(shù)的幾何意義,正確求導(dǎo)和設(shè)出切點(diǎn)是解題的關(guān)鍵,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=x2+2ax+blnx在(1,f(1))處的切線方程為x-y+1=0.
(1)求函數(shù)f(x)的解析式;
(2)設(shè)函數(shù)g(x)=m[f(x)-x2+3lnx]+x2
①若函數(shù)y=g(x)上的點(diǎn)都在第一象限,求實(shí)數(shù)m的取值范圍;
②求證:對任意的自然數(shù)n(n≥2),不等式$\sqrt{2}$•$\root{3}{3}$•$\root{4}{4}$•$\root{5}{5}$…$\root{n}{n}$<e${\;}^{\frac{n(n-1)}{2}}$成立(其中e=2.71828…為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知數(shù)列{an}的前n項(xiàng)和為Sn,且a1=2,Sn=2an+k,等差數(shù)列{bn}的前n項(xiàng)和為Tn,且Tn=n2
(1)求k和Sn
(2)若cn=an•bn,求數(shù)列{cn}的前n項(xiàng)和Mn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.①:關(guān)于x的不等式x2+(a-1)x+a2>0的解集是R;②:函數(shù)f(x)=x3+4ax-2在[1,+∞)上是增函數(shù),已知“命題①或命題②”為真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.從5本不同的文藝書和6本不同的科技書中任取3本,則文藝書和科技書都至少有1本的不同取法共有( 。
A.(C${\;}_{11}^{3}$-C${\;}_{5}^{3}$)種B.(C${\;}_{5}^{1}$C${\;}_{6}^{2}$+C${\;}_{5}^{2}$C${\;}_{6}^{1}$)種
C.(C${\;}_{11}^{3}$-C${\;}_{6}^{3}$)種D.(C${\;}_{5}^{1}$C${\;}_{6}^{1}$+C${\;}_{10}^{1}$)種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.($\sqrt{26}$+5)2n+1的小數(shù)表示中,小數(shù)點(diǎn)后至少連續(xù)有( 。
A.2n+1個(gè)零B.2n+2個(gè)零C.2n+3個(gè)零D.2n+4個(gè)零

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{{2}^{x}-{3}^{x}}{{2}^{x}}$,數(shù)列{an}的前n項(xiàng)和為Sn,對任何正整數(shù)n,點(diǎn)(n,Sn)都在y=f(x)的圖象上.
(1)求a1的值;
(2)當(dāng)n≥2時(shí),求an;
(3)求證:{an}是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若0<x≤$\frac{π}{3}$,則函數(shù)y=sinx+cosx+sinxcosx的值域是( 。
A.[-1,+∞)B.[-1,2]C.(0,2]D.(1,$\sqrt{2}$+$\frac{1}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=$\frac{1}{3}$x3-4x+4
(1)求曲線y=f(x)在點(diǎn)(0,4)處的切線方程
(2)若x∈[-3,3],求函數(shù)f(x)的最大值與最小值.

查看答案和解析>>

同步練習(xí)冊答案