20.已知|$\overrightarrow{a}$|=|$\overrightarrow$|=2,$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,則$\overrightarrow{a}$+$\overrightarrow$在$\overrightarrow{a}$上的正射影的為( 。
A.3B.2C.1D.0

分析 由題意可得,$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$的夾角為30°,|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{{(\overrightarrow{a}+\overrightarrow)}^{2}}$=2$\sqrt{3}$,根據(jù)$\overrightarrow{a}$+$\overrightarrow$在$\overrightarrow{a}$上的正射影的為|$\overrightarrow{a}$+$\overrightarrow$|•cos30°,計(jì)算求得結(jié)果.

解答 解:∵已知|$\overrightarrow{a}$|=|$\overrightarrow$|=2,$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,∴$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$的夾角為30°,|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{{(\overrightarrow{a}+\overrightarrow)}^{2}}$=$\sqrt{{\overrightarrow{a}}^{2}+2\overrightarrow{a}•\overrightarrow{+\overrightarrow}^{2}}$=$\sqrt{4+2•2•2•cos60°+4}$=2$\sqrt{3}$,
則$\overrightarrow{a}$+$\overrightarrow$在$\overrightarrow{a}$上的正射影的為|$\overrightarrow{a}$+$\overrightarrow$|•cos30°=2$\sqrt{3}$•$\frac{\sqrt{3}}{2}$=3,
故選:A.

點(diǎn)評(píng) 本題主要考查兩個(gè)向量的數(shù)量積的定義,求一個(gè)向量在另一個(gè)向量上的投影,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知集合A={x|x=$\frac{1}{9}$(2n+1),n∈Z},B={x|x=$\frac{4}{9}$n±$\frac{1}{9}$,n∈Z},則集合A,B之間的關(guān)系是( 。
A.A⊆BB.B⊆AC.A=BD.A?B

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=1+cost\\ y=sint\end{array}$(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為θ=$\frac{π}{4}$,試求C1與C2交點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在R上的函數(shù)f(x)滿足f(x)=$\left\{{\begin{array}{l}{{x^2},x∈[0,1)}\\{x,x∈[-1,0)}\end{array}}$,且f(x+2)=f(x),g(x)=$\frac{1}{x-2}$,則方程f(x)=g(x)在區(qū)間[-1,5]上的所有根之和約為下列哪個(gè)數(shù)(  )
A.4B.6C.8D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合A={x∈R|x2+x-2<0},B={x|${\frac{x-2}{x+1}$≤0},則A∩B=( 。
A.[-1,1]B.(-1,1)C.[-1,1)D.(-1,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若直線y=k(x-2)+4與曲線y=$\sqrt{4-{x^2}}$有兩個(gè)交點(diǎn),則k的取值范圍是(  )
A.[1,+∞)B.$[{-1,-\frac{3}{4}})$C.$({\frac{3}{4},1}]$D.(-∞,-1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知集合A={-2,-1,0,1,2,3},B={y|y=|x|-3,x∈A},則A∩B=( 。
A.{-2,1,0}B.{-1,0,1,2}C.{-2,-1,0}D.{-1,0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)函數(shù)f(x)=ax+xeb-x(其中a,b為常數(shù)),函數(shù)y=f(x)在點(diǎn)(2,2e+2)處的切線的斜率為e-1.
(1)求函數(shù)y=f(x)的解析式;
(2)求函數(shù)y=f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=($\frac{1}{x}$)${\;}^{3+2m-{m}^{2}}$(m∈Z)在(0,+∞)是單調(diào)減函數(shù),且為偶函數(shù).
(Ⅰ)求f(x)的解析式;
(Ⅱ)討論F(x)=af(x)+(a-2)x5.f(x)的奇偶性,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案