6.函數(shù)f(x)=-x2+2ax與g(x)=$\frac{1-ax}{x+1}$在區(qū)間(1,2)上都單調(diào)遞減,則實(shí)數(shù)a的取值范圍是(-1,1].

分析 分別利用二次函數(shù)、反比例函數(shù)的單調(diào)性,確定a的范圍,即可得出結(jié)論.

解答 解:∵f(x)=-x2+2ax的圖象是開口朝下,以x=a為對稱軸的拋物線,
f(x)=-x2+2ax在區(qū)間[1,2]上是減函數(shù),∴a≤1①;
∵g(x)=$\frac{1-ax}{x+1}$=-a+$\frac{a+1}{x+1}$在區(qū)間(1,2)上都單調(diào)遞減,
∴有a+1>0,解得a>-1②;
綜①②,得-1<a≤1,即實(shí)數(shù)a的取值范圍是(-1,1].
故答案為:(-1,1].

點(diǎn)評 本題主要考查二次函數(shù)、反比例函數(shù)的單調(diào)性的應(yīng)用,研究二次函數(shù)的單調(diào)性要明確開口方向及對稱軸,然后研究對稱軸與區(qū)間的相對位置是解答本題的關(guān)鍵

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.將一個(gè)圓的八個(gè)等分點(diǎn)分成相間的兩組,連接每組的四個(gè)點(diǎn)得到兩個(gè)正方形.去掉兩個(gè)正方形內(nèi)部的八條線段后可以形成一正八角星,如圖所示.設(shè)正八角星的中心為O,并且 $\overrightarrow{OA}$=$\overrightarrow{{e}_{1}}$,$\overrightarrow{OB}$=$\overrightarrow{{e}_{2}}$,若將點(diǎn)O到正八角星16個(gè)頂點(diǎn)的向量,都寫成為λ$\overrightarrow{{e}_{1}}$+μ$\overrightarrow{{e}_{2}}$,λ,μ∈R的形式,則λ+μ的最大值為( 。
A.$\sqrt{2}$B.2C.1+$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列是有關(guān)三角形ABC的幾個(gè)命題,
①若tanA+tanB+tanC>0,則△ABC是銳角三角形;
②若sin2A=sin2B,則△ABC是等腰三角形;
③若($\overrightarrow{AB}$+$\overrightarrow{AC}$)•$\overrightarrow{BC}$=0,則△ABC是等腰三角形;
④若cosA=sinB,則△ABC是直角三角形; 
其中正確命題的個(gè)數(shù)是( 。
A..1B..2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知集合A={x|1<x+2<5},B={x|-1<x<1},則( 。
A.A?BB.B?AC.A=BD.A∩B=∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.以下四個(gè)命題中:
①從勻速傳遞的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每10分鐘從中抽取一件產(chǎn)品進(jìn)行某項(xiàng)指標(biāo)檢測,這樣的抽樣是分層抽樣;
②在線性回歸分析中,R2為0.98的模型比R2為0.80的模型擬合的效果好;
③對分類變量X與Y的隨機(jī)變量k2的觀測值k來說,k越小,判斷“X與Y有關(guān)系”的把握程度越大;
④數(shù)據(jù)1,2,3,4的標(biāo)準(zhǔn)差是數(shù)據(jù)2,4,6,8的標(biāo)準(zhǔn)差的一半.
其中真命題的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知α是第一象限角,sinα-cosα=$\frac{{\sqrt{5}}}{5}$,則cos2α=( 。
A.$-\frac{3}{5}$B.$±\frac{3}{5}$C.$\frac{4}{5}$D.$±\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如圖,網(wǎng)格紙上正方形小格的邊長為1(表示1cm),圖中粗線畫出的是一個(gè)四面體的三視圖,則該四面體外接球的體積與四面體的體積的比值為( 。
A.2$\sqrt{2}$πB.3$\sqrt{3}$πC.D.2$\sqrt{5}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.用力F推動一物體運(yùn)動S米,設(shè)F與水平面的夾角為θ,則它所做的功是FScosθ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知△ABC的外心為O,且2$\overrightarrow{OA}$+3$\overrightarrow{OB}$+4$\overrightarrow{OC}$=$\overrightarrow{0}$,則cos∠BAC的值是$±\frac{1}{4}$.

查看答案和解析>>

同步練習(xí)冊答案