已知圓C:(x-3)2+(y-4)2=1和兩點A(1-m,0),B(1+m,0),m>0,若圓C上存在點P,使得∠APB=90°,則m的最大值為( 。
A、7B、6C、5D、4
考點:直線和圓的方程的應用
專題:計算題,直線與圓
分析:根據(jù)圓心C到O(0,0)的距離為5,可得圓C上的點到點O的距離的最大值為6.再由∠APB=90°,可得PO=
1
2
AB=m,可得m≤6,從而得到答案
解答: 解:圓C:(x-3)2+(y-4)2=1的圓心C(3,4),半徑為1,
∵圓心C到O(0,0)的距離為5,
∴圓C上的點到點O的距離的最大值為6.
再由∠APB=90°,以AB為直徑的圓和圓C有交點,可得PO=
1
2
AB=m,故有m≤6,
故選:B.
點評:本題主要直線和圓的位置關(guān)系,求得圓C上的點到點O的距離的最大值為6,是解題的關(guān)鍵,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

曲線y=sin3x和直線y=
1
2
在y軸右側(cè)有無數(shù)個交點,把交點的橫坐標從小到大依次記為x1,x2,…,xn,則x3等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x,y滿足
x-y+5≥0
x+y+k≥0
x≤3          
,若函數(shù)z=2x+4y的最小值為-6,則常數(shù)k=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的函數(shù)f(x)滿足f(x+1)=
log2(4-x),x≤0
f(x)-f(x-1),x>0
,計算f(200)的值等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=ax2-2x+a(a≠0)
(1)當a=-1時,求不等式f(x)<0的解集;
(2)若不等式f(x)≥0對x∈(0,+∞)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

由點P(1,1)發(fā)出光線射到直線x+y=-1上,反射后過點Q(2,3),則反射光線所在直線的一般方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若0≤x≤3,則y=x2-4x+3( 。
A、有最小值0,最大值3
B、有最小值-1,最大值0
C、有最小值-1,最大值1
D、有最小值-1,最大值3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正方體的外接球的半徑為1,則這個正方體的棱長為(  )
A、
2
3
B、
3
3
C、
2
2
3
D、
2
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

圓心在直線x-y-4=0上,并且經(jīng)過圓x2+y2+6x-4=0與圓x2+y2+6y-28=0交點的圓的方程為
 

查看答案和解析>>

同步練習冊答案