已知函數(shù)f(x)=
log
1
2
(x-1)
的定義域?yàn)榧螦,函數(shù)g(x)=3 m-2x-x2-1的值域?yàn)榧螧,且 A∪B=B,實(shí)數(shù)m的取值范圍是多少.
考點(diǎn):集合的包含關(guān)系判斷及應(yīng)用,函數(shù)的定義域及其求法,函數(shù)的值域
專題:集合
分析:對(duì)數(shù)式中真數(shù)應(yīng)大于0,偶次被開(kāi)方數(shù)大于等于0,求出集合A,又A是B的子集,根據(jù)指數(shù)運(yùn)算求出m的取值范圍.
解答: 解:∵f(x)=
log
1
2
(x-1)
,
∴0<x-1≤1,
即1<x≤2,
即A=(1,2],
∵g(x)=3 m-2x-x2-1,
設(shè)t=-x2-2x+m=-(x+1)2+1+m,
∴t≤1+m,
∴g(x)的值域?yàn)椋?1,31+m-1],
∵A∪B=B,∴A⊆B
∴31+m-1≥2解得m≥0,
∴m的取值范圍為[0,+∞).
點(diǎn)評(píng):本題主要考查函數(shù)的定義域的求法及利用函數(shù)的單調(diào)性解不等式和集合間的運(yùn)算,注意對(duì)數(shù)的真數(shù)要大于零,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

本題共有2題,第1小題滿分4分,第2小題滿分2分
已知集合A={x||x-1|≤1},B={x|x≥a}.
(1)當(dāng)a=1時(shí),求集合A∩B;
(2)若A⊆B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3
sin(π-ωx)-sin(
π
2
-ωx)(ω>0)的圖象與x軸相鄰兩交點(diǎn)的距離為π.
(1)求ω的值;
(2)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且f(A)=2,求
b-c
a
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+2(a-1)x=2的減區(qū)間是(-∞,4],求實(shí)數(shù)a的范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若直線l1:(a-2)x+3y+a=0,l2:ax+(a-2)y-1=0互相垂直,則實(shí)數(shù)a的值為( 。
A、-3B、2或-3
C、2D、-2或3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

f(x)=
1
3
x3
-4x+4的單調(diào)遞減區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a,b為實(shí)數(shù),命題甲:ab>b2,命題乙:a<b<0,則命題甲是命題乙的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的奇函數(shù)f(x)滿足f(x-4)=-f(x).
(1)當(dāng)f(1)=3時(shí),求f(2015)的值;
(2)求證:函數(shù)f(x)的圖象關(guān)于直線x=2對(duì)稱;
(3)若f(x)滿足在區(qū)間[0,2]上是增函數(shù)的條件,且f(2)=1,求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校有150名學(xué)生參加了中學(xué)生環(huán)保知識(shí)競(jìng)賽,為了解成績(jī)情況,現(xiàn)從中隨機(jī)抽取50名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì)(所有學(xué)生成績(jī)均不低于60分).請(qǐng)你根據(jù)尚未完成的頻率分布表,解答下列問(wèn)題:

分組頻數(shù)頻率
第1組[60,70)M0.26
第2組[70,80)15p
第3組[80,90)200.40
第4組[90,100]Nq
合計(jì)501
(Ⅰ)寫(xiě)出M、N、p、q(直接寫(xiě)出結(jié)果即可),并作出頻率分布直方圖;
(Ⅱ)若成績(jī)?cè)?0分以上的學(xué)生獲得一等獎(jiǎng),試估計(jì)全校所有參賽學(xué)生獲一等獎(jiǎng)的人數(shù);
(Ⅲ)現(xiàn)從所有一等獎(jiǎng)的學(xué)生中隨機(jī)選擇2名學(xué)生接受采訪,已知一等獎(jiǎng)獲得者中只有2名女生,求恰有1名女生接受采訪的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案