8.已知定義在(-1,1)上的奇函數(shù)f(x),在x∈(-1,0)時(shí),f(x)=2x+2-x.(1)求f(x)在(-1,1)上的表達(dá)式;
(2)若對(duì)于x∈(0,1)上的每一個(gè)值,不等式m•2x•f(x)<4x-1恒成立,求實(shí)數(shù)m的取值范圍;
(3)解不等式f(2x)+f(2x-1)>0.

分析 (1)利用函數(shù)是奇函數(shù),結(jié)合x(chóng)∈(-1,0)時(shí),f(x)=2x+2-x,求f(x)在(-1,1)上的表達(dá)式;
(2)若對(duì)于x∈(0,1)上的每一個(gè)值,不等式m•2x•f(x)<4x-1恒成立,可得m≥-1+$\frac{2}{{4}^{x}+1}$,求出右邊的最大值,即可求實(shí)數(shù)m的取值范圍;
(3)判斷f(x)在(-1,1)上是減函數(shù),再解不等式f(2x)+f(2x-1)>0.

解答 解:(1)由題意f(0)=0,
設(shè)x∈(0,1),-x∈(-1,0),
∴f(x)=-f(-x)=-(2x+2-x),
∴f(x)=$\left\{\begin{array}{l}{{2}^{x}+{2}^{-x},x∈(-1,0)}\\{0,x=0}\\{-({2}^{x}+{2}^{-x}),x∈(0,1)}\end{array}\right.$;
(2)∵對(duì)于x∈(0,1)上的每一個(gè)值,不等式m•2x•f(x)<4x-1恒成立,
∴m≥-1+$\frac{2}{{4}^{x}+1}$,
∵x∈(0,1),
∴-1+$\frac{2}{{4}^{x}+1}$∈(-$\frac{3}{5}$,0),
∴m≥0;
(3)由題意f(x)在(-1,0)上是減函數(shù),函數(shù)是奇函數(shù),∴f(x)在(-1,1)上是減函數(shù),
由f(2x)>-f(2x-1)=f(1-2x),得$\left\{\begin{array}{l}{-1<2x<1}\\{-1<2x-1<1}\\{2x<1-2x}\end{array}\right.$,
∴0<x<$\frac{1}{4}$,
∴不等式的解集為{x|0<x<$\frac{1}{4}$}.

點(diǎn)評(píng) 本題考查函數(shù)的單調(diào)性與奇偶性,考查學(xué)生解不等式的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.焦點(diǎn)在x軸上的橢圓$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{4}$=1的焦距是2,則m的值是5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.若全稱(chēng)命題:“?x∈(0,+∞),都有 a x>1”是真命題,則實(shí)數(shù) a 的取值范圍是a>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知f(x)=$\frac{1}{3}$x3-$\frac{3}{2}$ax2+2ax-$\frac{2}{3}$的兩個(gè)極值點(diǎn)為x1,x2(x1≠x2),且x2=2x1,則f(x)的零點(diǎn)個(gè)數(shù)為( 。
A.2B.3C.1或2D.1或3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.給出下列函數(shù)中圖象關(guān)于y軸對(duì)稱(chēng)的是( 。
①y=log2x;  ②y=x2; ③y=2|x|;   ④$y=\frac{2}{x}$.
A.①②B.②③C.①③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.過(guò)球O的一條半徑的中點(diǎn)且與該半徑垂直的截面圓的面積為4π,則球O的表面積為$\frac{64π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.在△ABC中,已知∠A=60°,$a=4\sqrt{6}$,b=8,求∠B的度數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,已知a=3,b=$\sqrt{6}$,A=$\frac{π}{3}$,則角B等于( 。
A.$\frac{π}{4}$B.$\frac{3π}{4}$C.$\frac{π}{4}$或$\frac{3π}{4}$D.以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知直線l1:x+2y-7=0與l2:2x+kx+3=0平行,則k的值是( 。
A.$\frac{1}{4}$B.-$\frac{1}{4}$C.-4D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案