【題目】已知關(guān)于x的不等式的解集中的整數(shù)解恰好有三個(gè),則實(shí)數(shù)a的取值范圍是______

【答案】

【解析】

由原不等式轉(zhuǎn)化為[4+2x-3][4-2x-3]≤0,根據(jù)解集中的整數(shù)恰有3個(gè),且為1,2,3,得到a的不等式,即可求解實(shí)數(shù)a的范圍,得到答案.

由題知,,則(4x-32≤4ax2,即(4x-32-4ax2≤0,

即(4x-3+2x)(4x-3-2x≤0

可得[4+2x-3][4-2x-3]≤0,

當(dāng)a=2時(shí),不等式為-24x+9≤0,解集為x,不是恰好有三個(gè)整數(shù)解.

當(dāng)a≠2時(shí),不等式為含x的一元二次不等式,此時(shí)

時(shí),即a=0時(shí),不等式的解為x=不是恰好有三個(gè)整數(shù)解.

0時(shí),即0a4a≠2時(shí),不等式的解集為{x|}

又∵,∴如果恰有三個(gè)整數(shù)解,只能是 1,2,3

解得:

時(shí),即a4時(shí),不等式的解集為{x|x}不會(huì)恰好有三個(gè)整數(shù)解.

綜上所述,a的取值范圍是[).

故答案為:[,).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓C:(a>b>0)的左、右焦點(diǎn)分別為,離心率為,過(guò)焦點(diǎn)且垂直于x軸的直線被橢圓C截得的線段長(zhǎng)為1.

(Ⅰ)求橢圓C的方程;

(Ⅱ)已知點(diǎn)M(0,-1),直線l經(jīng)過(guò)點(diǎn)N(2,1)且與橢圓C相交于A,B兩點(diǎn)(異于點(diǎn)M),記直線MA的斜率為,直線MB的斜率為,證明 為定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(1)當(dāng),時(shí),求函數(shù)的最小值;

(2)當(dāng),時(shí),求證方程在區(qū)間上有唯一實(shí)數(shù)根;

(3)當(dāng)時(shí),設(shè)函數(shù)兩個(gè)不同的極值點(diǎn),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求在區(qū)間上的最值;

(2)討論函數(shù)的單調(diào)性;

(3)當(dāng)時(shí),有恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,BC邊上的高所在直線的方程為x2y10A的平分線所在的直線方程為y0.若點(diǎn)B的坐標(biāo)為(1,2),求點(diǎn)A和點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1時(shí),解關(guān)于x的不等式

2)若不等式對(duì)任意恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)的部分圖像如圖所示,的圖象向右平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖象

(1)求函數(shù)的解折式;

(2)在,滿足,且其外接圓的半徑,的面積的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)在冪函數(shù)的圖像上.

1)求的表達(dá)式;

2)設(shè),求函數(shù)的零點(diǎn),推出函數(shù)的另外一個(gè)性質(zhì)(只要求寫(xiě)出結(jié)果,不要求證明),并畫(huà)出函數(shù)的簡(jiǎn)圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)的圖像與x軸有兩個(gè)不同的交點(diǎn),其中一個(gè)交點(diǎn)坐標(biāo)是,且當(dāng)時(shí),恒有.

1)求不等式的解(用a、c表示);

2)若不等式對(duì)所有恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案