分析 (1)把f(x),g(x)代入y=f(x)-g(x),求出導函數,再由在x=1與x=$\frac{1}{2}$時的導數值相等求得a的值,并進一步求得切線的斜率;
(2)由題意可得,函數y=f(x)-g(x)在區(qū)間($\frac{1}{3}$,1)上的導函數小于0恒成立,分離參數a,再由導數求得函數h(x)=$\frac{1}{{x}^{2}}-\frac{2}{x}$在區(qū)間($\frac{1}{3}$,1)上的范圍得答案.
解答 解:(1)由f(x)=lnx,g(x)=$\frac{1}{2}$ax2+2x,得y=lnx-$\frac{1}{2}$ax2-2x,
∴y′=$\frac{1}{x}-ax-2$,
則y′|x=1=-a-1,$y′{|}_{x=\frac{1}{2}}=-\frac{a}{2}$,
由題意,$-a-1=-\frac{a}{2}$,解得a=-2.
∴k=1;
(2)函數y=f(x)-g(x)=lnx-$\frac{1}{2}$ax2-2x在區(qū)間($\frac{1}{3}$,1)上單調遞減,
則y′=$\frac{1}{x}-ax-2$在區(qū)間($\frac{1}{3}$,1)上小于0恒成立,
即$\frac{1}{x}-ax-2$<0,分離參數a,得a>$\frac{1}{{x}^{2}}-\frac{2}{x}$.
令h(x)=$\frac{1}{{x}^{2}}-\frac{2}{x}$,則h′(x)=$\frac{2(x-1)}{{x}^{3}}$,
當x∈($\frac{1}{3}$,1)時,h′(x)<0,
∴h(x)在($\frac{1}{3}$,1)上為減函數,
則h(x)<h($\frac{1}{3}$)=3.
∴a≥3.
點評 本題考查利用導數研究過曲線上某點處的切線方程,考查了利用導數研究函數的單調性,訓練了分離參數法求字母的取值范圍,是中檔題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-∞,2$\sqrt{3}$-1) | B. | (-∞,-2$\sqrt{3}$+1) | C. | (-2$\sqrt{3}$+1,2$\sqrt{3}$-1) | D. | (-2$\sqrt{3}$+1,+∞) |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | 1 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com