5.已知函數(shù)f(x)=e1-x的定義域?yàn)镸,g(x)=ln(x-1)的定義域?yàn)镹,則M∩N為(  )
A.B.{x|x<-1}C.{x|x>1}D.{x|x<1}

分析 分別求出M,N,從而求出M∩N即可.

解答 解:函數(shù)f(x)=e1-x的定義域?yàn)镸,則M=R,
g(x)=ln(x-1)的定義域?yàn)镹,
則N={x|x>1},
故M∩N={x|x>1},
故選:C.

點(diǎn)評 本題考查了求函數(shù)的定義域問題,考查指數(shù)函數(shù)以及對數(shù)函數(shù)的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.用一個(gè)平面截半徑為25cm的球,截面面積是225πcm2,則球心到截面的距離是( 。
A.5cmB.10cmC.15cmD.20cm

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.袋中裝有大小相同且質(zhì)地一樣的五個(gè)球,五個(gè)球上分別標(biāo)有2,3,4,6,9這五個(gè)數(shù).現(xiàn)從中隨機(jī)選取兩個(gè)球,則所選的兩個(gè)球上的數(shù)字至少有一個(gè)是奇數(shù)的概率是$\frac{7}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)y=sin(πx+φ)(φ>0)的部分圖象如圖所示,設(shè)P是圖象的最高點(diǎn),A,B是圖象與x軸的交點(diǎn),記∠APB=θ,則sin2θ的值是$\frac{16}{65}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在四棱錐V-ABCD中,VD⊥平面ABCD,VD=DC=BC=2,AB=4,
AB∥CD,BC⊥CD.
(1)求證:BC⊥VC;
(2)求點(diǎn)A到平面VBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列命題:
①已知兩個(gè)不同的平面α,β和兩條不同的直線a,b,若a⊥α,b⊥β,且a∥b,則α∥β;
②已知兩個(gè)不同的平面α,β和兩條不同的直線a,b,若a⊥α,b⊥β,且a⊥b,則α⊥β;
③若一個(gè)二面角的兩個(gè)半平面分別與另一個(gè)二面角的兩個(gè)半平面平行,則這兩個(gè)二面角的平面角相等或互補(bǔ);
④若一個(gè)二面角的兩個(gè)半平面分別與另一個(gè)二面角的兩個(gè)半平面垂直,則這兩個(gè)二面角的平面角相等或互補(bǔ);
其中正確命題的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若sinθ+cosθ=$\frac{{\sqrt{5}}}{5}$,θ∈[0,π],則tanθ=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知f(x)=$\frac{π}{2}$+cosx,則f′($\frac{π}{2}$)=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)f(x)=$\left\{\begin{array}{l}{lnx,x>0}\\{x+1,x<0}\end{array}\right.$ 則f(x)>-1的解集為(  )
A.(-2,+∞)B.(-2,0)C.(-2,0)∪($\frac{1}{e}$,+∞)D.($\frac{1}{e}$,+∞)

查看答案和解析>>

同步練習(xí)冊答案