已知點A(m,n)在直線x+2y=1上,其中mn>0,則
2
m
+
1
n
的最小值為( 。
A、4
2
B、8
C、9
D、12
考點:基本不等式
專題:不等式的解法及應(yīng)用
分析:點A(m,n)在直線x+2y=1上,其中mn>0,可得m+2n=1,m,n>0.再利用“乘1法”與基本不等式的性質(zhì)即可得出.
解答: 解:∵點A(m,n)在直線x+2y=1上,其中mn>0,
∴m+2n=1,m,n>0.
2
m
+
1
n
=(m+2n)(
2
m
+
1
n
)
=4+
4n
m
+
m
n
≥4+2
4n
m
m
n
=8.當(dāng)且僅當(dāng)m=2n=
1
2
時取等號.
2
m
+
1
n
的最小值為8.
故選:B.
點評:本題考查了“乘1法”與基本不等式的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某射擊運動員在練習(xí)射擊中,每次射擊命中目標(biāo)的概率是
3
5
,則這名運動員在10次射擊中,至少有9次命中的概率是
 
.(記(
3
5
)10=p
,結(jié)果用含p的代數(shù)式表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=ax2+bx+c的圖象與一次函數(shù)y=kx+m圖象的交點是A(1,-3)、B(2,2,且拋物線的對稱軸是x=
1
4

(1)求一次函數(shù)和二次函數(shù)的解析式
(2)求A、B連點關(guān)于y軸對稱點的坐標(biāo)A1、B1的坐標(biāo),及四邊形ABB1A1的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點P(2,3)的直線l將圓Q:(x-1)2+(y-1)2=16分成兩段弧,當(dāng)形成的優(yōu)弧最長時,則
(1)直線l的方程為
 

(2)直線l被圓Q截得的弦長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=axsinx-
3
2
(a>0)在(
π
2
,π)內(nèi)有兩個零點,則a的可能值為( 。
A、1
B、
5
8
C、
3
π
D、
15
16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(x-φ)-1(0<φ<
π
2
),且
3
0
(f(x)+1)dx=0,則函數(shù)f(x)的一個零點是( 。
A、
6
B、
π
3
C、
π
6
D、
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=logax(a>0,a≠1)的圖象經(jīng)過點(2,
1
2
)
,則其反函數(shù)的解析式y(tǒng)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若(ax2+
b
x
6的展開式中x3項的系數(shù)為20,則ab的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

非空數(shù)集A如果滿足:①0∉A;②若對?x∈A,有
1
x
∈A,則稱A是“互倒集”.給出以下數(shù)集:
①{x∈R|x2+ax+1=0};  ②{x|x2-4x+1<0};  ③{y|y=
lnx
x
,x∈[
1
e
,1)∪(1,e]}
;
④{y|y=
2x+
2
5
x+
1
x
x∈[0,1)
x∈[1,2]
.其中“互倒集”的個數(shù)是( 。
A、4B、3C、2D、1

查看答案和解析>>

同步練習(xí)冊答案