分析 (Ⅰ)由求導(dǎo)公式、法則求出f′(x),根據(jù)題意和導(dǎo)數(shù)的幾何意義求出b的值,將(1,f(1))代入方程x+y+4=0求出f(1),代入解析式列出方程求出c,即可求出函數(shù)f(x)的解析式;
(Ⅱ)由(I)求出函數(shù)的定義域和f′(x),求出f′(x)>0和f′(x)<0的解集,即可求出函數(shù)f(x)的單調(diào)區(qū)間.
解答 解:(Ⅰ)由題意得,f′(x)=$\frac{1}{x}$-b,則f′(1)=1-b,
∵在點(diǎn)(1,f(1))處的切線方程為x+y+4=0,
∴切線斜率為-1,則1-b=-1,得b=2,
將(1,f(1))代入方程x+y+4=0,
得:1+f(1)+4=0,解得f(1)=-5,
∴f(1)=-b+c=-5,將b=2代入得c=-3,
故f(x)=lnx-2x-3;
(Ⅱ)依題意知函數(shù)的定義域是(0,+∞),且f′(x)=$\frac{1}{x}$-2,
令f′(x)>0得,0<x<$\frac{1}{2}$,令f′(x)<0得,x>$\frac{1}{2}$,
故f(x)的單調(diào)增區(qū)間為(0,$\frac{1}{2}$),單調(diào)減區(qū)間為($\frac{1}{2}$,+∞).
點(diǎn)評(píng) 本題考查求導(dǎo)公式和法則,導(dǎo)數(shù)的幾何意義,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性問題,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{3}$ | B. | $\frac{{\sqrt{6}}}{3}$ | C. | $\frac{{2\sqrt{2}}}{3}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①③ | B. | ②④ | C. | ③④ | D. | ②③ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com