分析 (Ⅰ)證明BD⊥平面PAC,利用平面與平面垂直的判定定理證明平面PBD⊥平面PAC;
(Ⅱ)利用VC-PBD=VP-BCD,根據(jù)體積公式,求PA的長.
解答 (Ⅰ)證明:因為底面ABCD是菱形,
所以BD⊥AC.
因為PA⊥平面ABCD,BD?平面ABCD,
所以PA⊥BD.又AC∩PA=A,
所以BD⊥平面PAC.-----------------(4分)
又BD?平面PBD,所以平面PBD⊥平面PAC. …(6分)
(Ⅱ)解:因為底面ABCD是菱形,且AB=2,∠BAD=60°,
所以${S_{△BCD}}=\sqrt{3}$.
又VC-PBD=VP-BCD,三棱錐P-BCD的高為PA,
所以$\frac{1}{3}×\sqrt{3}×PA=\frac{{\sqrt{3}}}{2}$,解得$PA=\frac{3}{2}$. …(12分)
點評 本題考查平面與平面、直線與平面垂直的判定,考查三棱錐體積的計算,考查學(xué)生分析解決問題的能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 恰有1只是壞的概率 | B. | 2只都是壞的概率 | ||
C. | 恰有1只是好的概率 | D. | 至多1只是壞的概率 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 4 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com