3.如圖所示的多面體是由底面為ABCD的長方體被截面AEC′F所截而得到的,其中AB=BC=CC′=3,BE=1.
(Ⅰ)求證:四邊形AEC′F是平行四邊形;
(Ⅱ)求幾何體ABCDEC′F的體積.

分析 (Ⅰ)根據(jù)面面平行的性質(zhì)定理得出AE∥C′F,AF∥C′E,故四邊形AEC′F是平行四邊形;
(Ⅱ)將幾何體補成正方體,則幾何體的體積為正方體體積的一半.

解答 證明:(Ⅰ)∵平面ABE∥平面DCC′F,平面AEC′F∩平面ABE=AE,平面AEC′F∩平面DCC′F=C′F,
∴AE∥C′F,
同理可得AF∥C′E,
∴四邊形AEC′F是平行四邊形.
(Ⅱ)將幾何體補成棱長為3的正方體,
∴幾何體ABCDEC'F的體積V=$\frac{1}{2}$V正方體=$\frac{1}{2}$×33=$\frac{27}{2}$.

點評 本題考查了面面平行的性質(zhì),幾何體的體積計算,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

13.在△ABC中,AB=4,AC=4$\sqrt{2}$,∠BAC=45°,以AC的中線BD為折痕,將△ABD沿BD折起,如圖所示,構成二面角A′-BD-C,在面BCD內(nèi)作CE⊥CD,且$CE=\sqrt{2}$.  
 (Ⅰ)求證:CE∥平面A'BD;
(Ⅱ)如果二面角A′-BD-C的大小為90°,求二面角B-A′C-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.直線l1:x+y=1與直線l2:2x+2y-3=0之間的距離為$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.小明到他父親的木工房,看到一個棱長為50cm的立方體工件(如圖),從立方體的前后、左右、上下看,都有且僅有兩個相通的正方形孔,請你算一算,這個立方體剩下的體積是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知定義在R上的函數(shù)f(x)=$\frac{x}{{x}^{2}+1}$,函數(shù)g(x)=$\frac{mx}{1+x}$的定義域為(-1,+∞).
(1)若g(x)=$\frac{mx}{1+x}$在(-1,+∞)上遞減,根據(jù)單調(diào)性的定義求實數(shù)m的取值范圍;
(2)在(1)的條件下,若函數(shù)h(x)=f(x)+g(x)在區(qū)間(-1,1)上有且僅有兩個不同的零點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.圓O1:x2-2x+y2+4y+1=0的圓心坐標為( 。
A.(1,2)B.(-1,2)C.(1,-2)D.(-1,-2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=-x2+ax-b.
(1)若a,b都是從0,1,2,3,4五個數(shù)中任取的一個數(shù),求方程f(x)=0有根的概率.
(2)若a,b都是從區(qū)間[0,4]任取的一個數(shù),求f(1)>0成立時的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.某校對甲、乙兩個文科班的數(shù)學考試成績進行分析,規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計成績后,得到如下的2×2列聯(lián)表.根據(jù)列聯(lián)表的數(shù)據(jù)判斷有多少的把握認為“成績與班級有關系”.(  )
優(yōu)秀非優(yōu)秀合計
甲班105060
乙班203050
合計3080110
K2≥k0.1000.0500.0250.0100.001
k2.7063.8415.0246.63510.828
參考公式與臨界值表:K2=$\frac{n(ac-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
A.90%B.95%C.99%D.99.9%

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.設變量x,y滿足約束條件$\left\{\begin{array}{l}x≥0\\ y≥3x\\ x+ay≤7\end{array}\right.$.其中a>1,若目標函數(shù)z=x+y的最大值為4,則a的值為2.

查看答案和解析>>

同步練習冊答案