1.已知△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,∠A=60°,∠B=45°,a=3,則b=$\sqrt{6}$.

分析 由已知利用正弦定理即可解得b的值.

解答 解:∵∠A=60°,∠B=45°,a=3,
∴由正弦定理$\frac{a}{sinA}=\frac{sinB}$,可得:b=$\frac{asinB}{sinA}$=$\frac{3×\frac{\sqrt{2}}{2}}{\frac{\sqrt{3}}{2}}$=$\sqrt{6}$.
故答案為:$\sqrt{6}$.

點(diǎn)評(píng) 本題主要考查了正弦定理在解三角形中的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.設(shè)隨機(jī)變量X~B(4,$\frac{1}{3}$),則E(X)=$\frac{4}{3}$,D(3X+2)=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{3},x≤a}\\{{x}^{2}+2x,x>a}\end{array}\right.$,若存在實(shí)數(shù)b,使函數(shù)g(x)=f(x)十b有兩個(gè)零點(diǎn),則a的取值范圍是( 。
A.(-∞,-1)∪(-1,0)∪(2,+∞)B.(-∞,-2)∪(-1,0)∪(1,+∞)C.(-∞,0)∪(1,+∞)D.(-∞,-1)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.1-2sin267.5°=$-\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.搖獎(jiǎng)器中有10個(gè)小球,其中8個(gè)小球上標(biāo)有數(shù)字2,2個(gè)小球上標(biāo)有數(shù)字5,現(xiàn)搖出3個(gè)小球,規(guī)定所得獎(jiǎng)金(元)為這些小球上記號(hào)之和,如果參加此次搖獎(jiǎng),求獲得所有可能獎(jiǎng)金數(shù)及相應(yīng)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.sin215°-cos215°的值為( 。
A.$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知數(shù)列{an}的前n項(xiàng)和為Sn,若a1=2,n•an+1=Sn+n2+n,n∈N*
(1)求證:{$\frac{{S}_{n}}{n}$}是等差數(shù)列;
(2)求數(shù)列{2n-1•an}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖所示,在四棱錐P-ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB⊥AD,AB∥CD,AB=BC=2CD=2,AD=$\sqrt{3}$,PE=2BE.
(1)求證:平面PAD⊥平面PCD;
(2)若二面角P-AC-E的大小為45°,求直線PA與平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知數(shù)列{an}滿足a1a2…an=n+1,則a3=$\frac{4}{3}$;若數(shù)列{bn}滿足bn=$\frac{{a}_{n}}{(n+1)^{2}}$,Sn為數(shù)列{bn}的前n項(xiàng)和,則Sn=$\frac{n}{n+1}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案