13.已知數(shù)列{an}的前n項(xiàng)和為Sn,若a1=2,n•an+1=Sn+n2+n,n∈N*
(1)求證:{$\frac{{S}_{n}}{n}$}是等差數(shù)列;
(2)求數(shù)列{2n-1•an}的前n項(xiàng)和Tn

分析 (1)要證{$\frac{{S}_{n}}{n}$}是等差數(shù)列,即證$\frac{{S}_{n+1}}{n+1}$-$\frac{{S}_{n}}{n}$為常數(shù),運(yùn)用an+1=Sn+1-Sn,化簡(jiǎn)已知條件,即可得到;
(2)由等差數(shù)列的通項(xiàng)公式,可得an=2n,2n-1•an=n•2n,再由數(shù)列的求和方法:錯(cuò)位相減法,結(jié)合等比數(shù)列的求和公式,即可得到所求和.

解答 解:(1)證明:由a1=2,n•an+1=Sn+n2+n,
可得n(Sn+1-Sn)=Sn+n2+n,
即有nSn+1=(n+1)Sn+n(n+1),
兩邊同除以n(n+1),可得
$\frac{{S}_{n+1}}{n+1}$=$\frac{{S}_{n}}{n}$+1,即$\frac{{S}_{n+1}}{n+1}$-$\frac{{S}_{n}}{n}$=1,
可得{$\frac{{S}_{n}}{n}$}是首項(xiàng)為2,公差為1的等差數(shù)列;
(2)由(1)可得$\frac{{S}_{n}}{n}$=2+n-1=n+1,
即有Sn=n(n+1),
則n•an+1=Sn+n2+n=2n(n+1),
即an+1=2(n+1),即有an=2n,2n-1•an=n•2n,
前n項(xiàng)和Tn=1•2+2•22+3•23+…+n•2n,
2Tn=1•22+2•23+3•24+…+n•2n+1
兩式相減可得,-Tn=2+22+23+…+2n-n•2n+1
=$\frac{2(1-{2}^{n})}{1-2}$-n•2n+1,
化簡(jiǎn)可得,Tn=(n-1)•2n+1+2.

點(diǎn)評(píng) 本題考查等差數(shù)列的定義和通項(xiàng)公式的運(yùn)用,考查數(shù)列的求和方法:錯(cuò)位相減法,以及等比數(shù)列的求和公式,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,在四棱錐P-ABCD中,底面ABCD為菱形,其中PA=PD=AD=2,∠BAD=60°,Q為AD中點(diǎn).
(1)求證:AD⊥PB;
(2)若平面PAD⊥平面ABCD,且M為PC的中點(diǎn),求四棱錐M-ABCD的體積.
(3)在(2)的條件下,求二面角P-AB-D的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如表提供了某廠生產(chǎn)甲產(chǎn)品過(guò)程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對(duì)照數(shù)據(jù):
x246810
y565910
(1)請(qǐng)根據(jù)表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程$\widehaty$=$\widehatb$x+$\widehata$;
(2)根據(jù)(1)求出的線性回歸方程,預(yù)測(cè)生產(chǎn)20噸甲產(chǎn)品的生產(chǎn)能耗是多少?lài)崢?biāo)準(zhǔn)煤?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,∠A=60°,∠B=45°,a=3,則b=$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知角α的終邊與x軸正半軸的夾角為30°,則α=2kπ±$\frac{π}{6}$,(k∈Z)(用弧度制表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知雙曲線x2-my2=1的一個(gè)焦點(diǎn)是($\sqrt{5}$,0),則其漸近線方程為y=±2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.設(shè)關(guān)于x的不等式(x+2)(a-x)≥0(a∈R)的解集為M,不等式x2-2x-3≤0的解集為N,且M∩N=[-1,2]
(1)求實(shí)數(shù)a的值;
(2)若在集合M∪N中任取一個(gè)實(shí)數(shù)x,求“x∈M∩N”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.?dāng)?shù)列{an}的前n項(xiàng)和Sn滿足Sn=n2an且a1=2,則( 。
A.an=$\frac{4}{n(n+1)}$B.an=$\frac{2}{n+1}$C.an=$\frac{4}{n+1}$D.an=$\frac{2}{{n}^{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.?dāng)S一枚均勻骰子二次,所得點(diǎn)數(shù)之和為10的概率是( 。
A.$\frac{1}{36}$B.$\frac{1}{12}$C.$\frac{1}{8}$D.$\frac{1}{6}$

查看答案和解析>>

同步練習(xí)冊(cè)答案