A. | $\frac{1}{2}$ | B. | 1 | C. | $\frac{3}{2}$ | D. | 2 |
分析 根據(jù)直線垂直的等價條件求出切線斜率,然后求出函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)的幾何意義建立方程關(guān)系進行求解即可.
解答 解:直線x-2y=0的斜率k=$\frac{1}{2}$,
∵f(x)=$\frac{{m+{e^{2x+1}}}}{2x+1}$在x=0處的切線與直線x-2y=0垂直,
∴f(x)的切線斜率k=-2,
函數(shù)的導(dǎo)數(shù)f′(x)=$\frac{2{e}^{2x+1}(2x+1)-(m+{e}^{2x+1})×2}{(2x+1)^{2}}$,
則f′(0)=$\frac{2e-2(m+e)}{1}$=-2m,
由f′(0)=-2,得-2m=-2,得m=1,
故選:B.
點評 本題主要考查導(dǎo)數(shù)的幾何意義,根據(jù)直線相切的等價條件求出切線斜率以及根據(jù)導(dǎo)數(shù)的幾何意義建立方程是解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
x | 2 | 4 | 5 | 6 | 8 |
y | 20 | 40 | 60 | 70 | 80 |
A. | -0.5萬元 | B. | 0.5萬元 | C. | 1.5萬元 | D. | 2.5萬元 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (3,5) | B. | ($\sqrt{3},\sqrt{5}$) | C. | ($\sqrt{3},5$) | D. | ($\sqrt{5},3$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | k∈[-$\frac{3}{4}$,0) | B. | k∈(0,$\frac{4}{3}$] | C. | k∈(0,$\frac{3}{4}$] | D. | k∈[-$\frac{3}{4}$,$\frac{3}{4}$] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com