11.如果集合P={x|x>-1},那么(  )
A.0⊆PB.{0}∈PC.∅∈PD.{0}⊆P

分析 通過元素是否滿足集合的公共屬性,判斷出元素是否屬于集合.

解答 解:P={x|x>-1},
∵0>-1,
∴0∈P或{0}⊆P.
故選:D.

點評 本題考查如何判斷元素與集合的關(guān)系、考查“∈”表示元素與集合的關(guān)系、“⊆”表示集合與集合的關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=lnx+x2-3x-m.
(1)當(dāng)m=0時,求函數(shù)f(x)的極小值;
(2)若函數(shù)f(x)在區(qū)間(m+$\frac{1}{4}$,1)上是單調(diào)函數(shù),求實數(shù)m取值范圍;
(3)若函數(shù)y=2x-lnx(x∈[1,4])的圖象總在函數(shù)y=f(x)圖象的上方,求實數(shù)m取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若函數(shù)f(x)=x3-3x在[a,6-a2)上有最小值,則實數(shù)a的取值范圍是( 。
A.(-$\sqrt{5}$,1)B.[-$\sqrt{5}$,1)C.[-2,1)D.(-$\sqrt{5}$,-2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=x+$\frac{m}{x}$,且f(1)=5.
(1)判斷函數(shù)f(x)在(2,+∞)上的單調(diào)性,并用單調(diào)性定義證明你的結(jié)論.
(2)若f(x)≥a對于x∈[4,+∞)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.函數(shù)f(x)=12x-x3+5在區(qū)間[-3,3]上的最小值是-11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=2x3-12x2+18x+1.
(1)求函數(shù)f(x)的單調(diào)區(qū)間
(2)求函數(shù)f(x)在[-1,4]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=alnx+x2(a為常數(shù))
(Ⅰ)當(dāng)a=-4時,求函數(shù)y=f(x)在[1,e]上的最大值及其相應(yīng)的x值.
(Ⅱ)若a>0,對于滿足1≤x1≤x2≤e的任意的x1,x2,都有|f(x1)-f(x2)|≤|${\frac{1}{x_1}$-$\frac{1}{x_2}}$|.求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.對于數(shù)25,規(guī)定第1次操作為23+53=133,第2次操作為13+33+33=55,如此反復(fù)操作,則第2011次操作后得到的數(shù)是( 。
A.25B.250C.55D.133

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在矩形ABCD中,$AB=6,BC=2\sqrt{3}$,沿對角線BD將三角形ABD向上折起,使點A移至點P,且點P在平面BCD上的射影O在DC上,
(1)求證:BC⊥PD;
(2)若M為PC的中點,求二面角B-DM-C的大。

查看答案和解析>>

同步練習(xí)冊答案