10.已知各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,若a5a9=3,a6a10=9,則a7a8=(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.4$\sqrt{3}$D.3$\sqrt{3}$

分析 由已知結(jié)合等比數(shù)列的性質(zhì)求得a7,a8的值,則a7a8可求.

解答 解:在各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,
由a5a9=3,a6a10=9,得${{a}_{7}}^{2}=3,{{a}_{8}}^{2}=9$,
∴${a}_{7}=\sqrt{3},{a}_{8}=3$,
則a7a8=$3\sqrt{3}$.
故選:D.

點(diǎn)評(píng) 本題考查等比數(shù)列的通項(xiàng)公式,考查了等比數(shù)列的性質(zhì),是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}\sqrt{x},x≥0\\ \sqrt{-x},x<0\end{array}$,若f(a)+f(-1)=4,則a=(  )
A.±1B.9C.-9D.±9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.設(shè)集合A={x|1≤x≤5},B={x|log2x<2},則A∪B等于( 。
A.(-1,5]B.[1,4)C.(0,5]D.[-1,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知圓的圓心在直線l:y=2x-1上,且與兩坐標(biāo)軸均相切,求該圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知復(fù)數(shù)$\frac{1-i}{z}$=4+2i(i為虛數(shù)單位),則復(fù)數(shù)z在平面上的對(duì)應(yīng)點(diǎn)所在的象限是( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知集合A={0,2,3},B={1,2,3},從A,B中各取一個(gè)數(shù),則這兩個(gè)數(shù)之和等于3的概率是(  )
A.$\frac{2}{9}$B.$\frac{1}{3}$C.$\frac{4}{9}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在△ABC中,已知AC=4,BC=5.
(1)若∠A=60°,求cosB的值;
(2)若cos(A-B)=$\frac{7}{8}$,點(diǎn)D在邊BC上,滿足DB=DA,求CD的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.將一枚均勻的硬幣連擲4次,計(jì)算:
(1)4次都是正面朝上的概率;
(2)至少有一次正面朝上的概率;
(3)至多有一次正面朝上的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.從裝有3只紅球,2只白球和2只黑球的袋中逐一取球,已知每只球披抽取的可能性相同.
(1)若抽取后又放回,抽3次.
①求恰有2次為紅球的概率;
②求抽到紅球次數(shù)X的數(shù)學(xué)期望;
(2)若抽取后不放回,抽完紅球所需次數(shù)為Y,求Y的分布列及數(shù)學(xué)期望E(Y).

查看答案和解析>>

同步練習(xí)冊(cè)答案