分析 設直線AB的方程為x=my+1,m≠0,則直線CD的方程為x=-$\frac{1}{m}$y+1,分別代入橢圓方程,由于韋達定理和中點坐標公式可得中點M,N的坐標,求得斜率和直線方程,即可得到定點H,檢驗m=0也成立得答案.
解答 解:由橢圓$\frac{x^2}{4}+\frac{y^2}{3}$=1,得a2=4,b2=3,則c2=4-3=1,
∴橢圓右焦點為F(1,0),
設直線AB的方程為x=my+1,m≠0,
則直線CD的方程為x=-$\frac{1}{m}$y+1,
聯(lián)立AB方程與橢圓方程,消去x,得(3m2+4)y2+6my-9=0,
設A(x1,y1),B(x2,y2),則y1+y2=-$\frac{6m}{3{m}^{2}+4}$,y1y2=$-\frac{9}{3{m}^{2}+4}$,
∴x1+x2=(my1+1)+(my2+1)
=m(y1+y2)+2=$-\frac{6{m}^{2}}{3{m}^{2}+4}+2=\frac{8}{3{m}^{2}+4}$,
由中點坐標公式得M($\frac{4}{3{m}^{2}+4}$,-$\frac{3m}{3{m}^{2}+4}$),
將M的坐標中的m用-$\frac{1}{m}$代換,得CD的中點N($\frac{4{m}^{2}}{3+4{m}^{2}}$,$\frac{3m}{3+4{m}^{2}}$),
kMN=$\frac{7m}{4({m}^{2}-1)}$,
直線MN的方程為y+$\frac{3m}{3{m}^{2}+4}$=$\frac{7m}{4({m}^{2}-1)}$(x-$\frac{4}{3{m}^{2}+4}$),
即為y=$\frac{m}{{m}^{2}-1}$($\frac{7}{4}$x-1),
令$\frac{7}{4}$x-1=0,可得x=$\frac{4}{7}$,即有y=0,
則直線MN過定點H,且為H($\frac{4}{7}$,0).
當m=0,即有x=1,可得直線MN也過定點H.
故答案為:$({\frac{4}{7},\;0})$.
點評 本題考查橢圓的簡單性質(zhì),考查直線與橢圓位置關(guān)系的應用,考查直線系方程,是中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3π}{4}$ | B. | -$\frac{7π}{4}$ | C. | -$\frac{5π}{4}$ | D. | -$\frac{3π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 等邊三角形 | B. | 等腰直角三角形 | C. | 直角三角形 | D. | 等腰三角形 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com