為了了解高一學(xué)生的身體發(fā)育情況,打算在高一年級(jí)10個(gè)班中某兩個(gè)班按男女生比例抽取樣本,正確的是( 。
A、隨機(jī)抽樣
B、分層抽樣
C、先用分層抽樣,再用隨機(jī)數(shù)表法
D、先用抽簽法,再用分層抽樣
考點(diǎn):收集數(shù)據(jù)的方法
專題:概率與統(tǒng)計(jì)
分析:根據(jù)題意,是先從數(shù)量較少的班級(jí)中抽取2個(gè)班級(jí),再?gòu)牟町惷黠@的男女生中按比例抽取學(xué)生,組成樣本,由此得出抽樣方法是什么.
解答: 解:根據(jù)題意,總體是高一學(xué)生的身體發(fā)育情況,
從高一年級(jí)10個(gè)班中某兩個(gè)班按男女生比例抽取學(xué)生組成樣本,
∴第一步是從數(shù)量較少的班級(jí)中抽取2個(gè)班級(jí),宜用抽簽法或隨機(jī)數(shù)表法;
第二步是從差異比較明顯的男女生中按比例抽取學(xué)生數(shù),宜用分層抽樣法;
綜上,正確的抽樣方法是D.
故選:D.
點(diǎn)評(píng):本題考查了抽樣方法的應(yīng)用問(wèn)題,解題時(shí)應(yīng)根據(jù)抽樣特點(diǎn)進(jìn)行選擇抽樣方法,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0),M,N是橢圓上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),P是橢圓上任意一點(diǎn),且直線PM,PN的斜率分別為k1,k2(k1k2≠0),若橢圓的離心率為
3
2
,則|k1|+|k2|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下面對(duì)程序框圖中的圖形符號(hào)的說(shuō)法錯(cuò)誤的是( 。
A、起、止框是任何流程不可少的,表明程序開(kāi)始和結(jié)束
B、輸入、輸出可用在算法中任何需要輸入、輸出的位置
C、算法中間要處理數(shù)據(jù)或計(jì)算,可分別寫(xiě)在不同的注釋框內(nèi)
D、當(dāng)算法要求對(duì)兩個(gè)不同的結(jié)果進(jìn)行判斷時(shí),判斷條件要寫(xiě)在判斷框內(nèi)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=1,an+1=
an
an+3
(n∈N*).
(1)求證:{
1
an
+
1
2
}是等比數(shù)列,并求{an}的通項(xiàng)公式an;
(2)數(shù)列{bn}滿足bn=
2
an
,求數(shù)列{bn}的前n項(xiàng)和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線y=sinx(0≤x≤
π
2
)與y軸、直線y=1圍成的封閉圖形的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知m∈R,命題p:對(duì)于任意x∈[0,8],不等式log 
1
3
(x+1)≥m2-3恒成立;命題q:對(duì)任意x∈R,不等式|1+sin2x-cos2x|≤2m|cos(x-
π
4
)|恒成立.
(1)若p為真命題,求m的取值范圍;
(2)若p且q為假,p或q為真,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的通項(xiàng)公式為an=n2-n,則56是該數(shù)列的第
 
項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題“若?x∈D,f(-x)=f(x),則函數(shù)y=f(x)(x∈D)是偶函數(shù)”的逆否命題是( 。
A、若函數(shù)y=f(x)(x∈D)不是偶函數(shù),則?x∈D,f(-x)≠f(x)
B、若函數(shù)y=f(x)(x∈D)不是偶函數(shù),則?x∈D,f(-x)≠f(x)
C、若?x∈D,f(-x)≠f(x),則函數(shù)y=f(x)(x∈D)不是偶函數(shù)
D、若?x∈D,f(-x)≠f(x),則函數(shù)y=f(x)(x∈D)不是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線2cosα•x-y-1=0,α∈[
π
6
,
2
3
π]的傾斜角θ的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案