16.如圖是判斷輸入的整數(shù)x奇偶性的程序框圖:其中判斷框內可以填入的條件是( 。
A.m=0B.x=0C.x=1D.m=1

分析 根據(jù)題意,由程序框圖所體現(xiàn)的算法是判斷一個數(shù)是奇數(shù)還是偶數(shù),即看這個數(shù)除以2的余數(shù)是1還是0,從而得到判斷框中的條件.

解答 解:由程序框圖所體現(xiàn)的算法可知判斷一個數(shù)是奇數(shù)還是偶數(shù),
看這個數(shù)除以2的余數(shù)是1還是0,
由圖可知應該填m=1.
故選:D.

點評 本題考查了選擇結構的應用問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

17.如圖,四棱錐P-ABCD中,底面ABCD是平行四邊形,且PA⊥平面ABCD,PA=AB=AD=2,PC與底面ABCD所成角為30°.
(I)證明:平面PBD⊥平面PAC;
(II)求平面APB與平面PCD所成二面角(銳角)的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.設U=R,A={x|x<1} 則∁UA={x|x≥1}?.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知數(shù)列{an}的前n項和為Sn,且滿足${S_n}+n=2{a_n}(n∈{N^*})$.
(1)證明:數(shù)列{an+1}為等比數(shù)列,并求數(shù)列{an}的通項公式;
(2)數(shù)列{bn}滿足${b_n}={a_n}•{log_2}({a_n}+1)(n∈{N^*})$,其前n項和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.辦公室剛裝修一新,放些植物花草可以清除異味,公司提供綠蘿、文竹、碧玉、蘆薈4種植物供員工選擇,每個員工只能任意選擇1種,則員工甲和乙選擇不同的概率為$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.如圖是某高三學生七次模擬考試的物理成績的莖葉圖,則該學生物理成績的平均數(shù)和中位數(shù)分別為( 。
A.87和85B.86和85C.87和84D.86和84

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=ln(x+a)-x2-x在x=0處取得極值.求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.某車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此作了5次試驗,得到數(shù)據(jù)如下:
零件的個數(shù)x(個)23456
加工的時間y(小時)2.23.85.56.57.0
若由此資料知y與x呈線性關系,試求:
(1)求y關于x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$;
(2)試預測加工10個零件需要的時間.
參考公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.若函數(shù)f(x)=x6,則f′(-1)=(  )
A.6B.-6C.1D.-1

查看答案和解析>>

同步練習冊答案