20.已知函數(shù)y=2sin(ωx+φ)(ω>0)的部分圖象如圖所示,點A(-$\frac{π}{6}$,0)、B、C是該圖象與x軸的交點,過點B作直線交該圖象于D、E兩點,點F($\frac{7π}{12}$,0)是f(x)的圖象的最高點在x軸上的射影,則($\overrightarrow{AD}$-$\overrightarrow{EA}$)•(ω$\overrightarrow{AC}$)的值是(  )
A.2B.π2
C.2D.以上答案均不正確

分析 根據(jù)函數(shù)y=2sin(ωx+φ)(ω>0)的部分圖象,利用周期性求得ω,可得C、B的坐標,再根據(jù)線段EF關于點B對稱,利用兩個向量的加減法及其幾何意義求得要求式子的值.

解答 解:根據(jù)函數(shù)y=2sin(ωx+φ)(ω>0)的部分圖象可得$\frac{3}{4}$•$\frac{2π}{ω}$=$\frac{7π}{12}$-(-$\frac{π}{6}$),∴ω=2.
∵2•(-$\frac{π}{6}$)+φ=π,∴φ=$\frac{4π}{3}$,函數(shù)y=2sin(2x+$\frac{4π}{3}$),可得C($\frac{5π}{6}$,0),
故AC的中點B($\frac{π}{3}$,0).
由題意可得線段EF關于點B對稱,則($\overrightarrow{AD}$-$\overrightarrow{EA}$)•(ω$\overrightarrow{AC}$)=($\overrightarrow{AD}$+$\overrightarrow{AE}$)•(ω$\overrightarrow{AC}$)
=2$\overrightarrow{AB}$•2$\overrightarrow{AC}$=4|AB|•|AC|=4•$\frac{T}{2}$•T=2T2=2•${(\frac{2π}{2})}^{2}$=2π2
故選:A.

點評 本題主要考查正弦函數(shù)的圖象,兩個向量的加減法及其幾何意義,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

10.已知袋中裝有大小相同的8個小球,其中5個紅球的編號為1,2,3,4,5,3個藍球的編號為1,2,3,現(xiàn)從袋中任意取出3個小球.
(1)求取出的3個小球中,有小球編號為3的概率;
(2)記X為取出的3個小球中編號的最大值,求X的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.集合A={1,2,3,4},B={x∈R|x≤3},則A∩B=( 。
A.{1,2,3,4}B.{1,2,3}C.{2,3}D.{1,4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.在△ABC中,角A,B,C所對的邊分別為a,b,c,給出下列結論:
①A>B>C,則sinA>sinB>sinC;
②必存在A,B,C,使tanAtanBtanC<tanA+tanB+tanC成立;
③若sin2A+sin2B>sin2C,則△ABC是鈍角三角形;
④若$\frac{a}{{cos\frac{A}{2}}}$=$\frac{{cos\frac{B}{2}}}$=$\frac{c}{{cos\frac{C}{2}}}$,則△ABC是等邊三角形.
其中正確的命題的序號是①④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.函數(shù)y=$\frac{sinx}{3+sinx}$的最大值為$\frac{1}{4}$,最小值為-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知a>0,b>0,且log4a=log6b=log9(5a+2b),求$\frac{a}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.點A(-2,1)到直線3x-4y-5=0的距離是3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.如圖,矩形ORTM內(nèi)放置6個邊長均為1的小正方形,其中A,B,C,D在矩形的邊上,且E為AD的中點,則$(\overrightarrow{AE}-\overrightarrow{BC})•\overrightarrow{BD}$=-6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知函數(shù)y=sin(ωx+φ)的圖象如圖所示,則ω=2,φ=$\frac{π}{3}$.

查看答案和解析>>

同步練習冊答案