9.已知扇形的周長(zhǎng)是4cm,則扇形面積最大是(  )
A.2B.1C.$\frac{1}{2}$D.3

分析 由扇形的周長(zhǎng)和面積公式都和半徑和弧長(zhǎng)有關(guān),故可設(shè)出半徑和弧長(zhǎng),表示出周長(zhǎng)和面積公式,根據(jù)基本不等式做出面積的最大值即可.

解答 解:設(shè)扇形半徑為r,弧長(zhǎng)為l,則周長(zhǎng)為2r+l=4,面積為s=$\frac{1}{2}$lr,
∵4=2r+l≥2$\sqrt{2rl}$,
∴rl≤2,
∴s=$\frac{1}{2}$lr≤$\frac{1}{2}×2$=1.
故選:B.

點(diǎn)評(píng) 本題考查扇形的周長(zhǎng)和面積公式及利用基本不等式求最值,考查運(yùn)用所學(xué)知識(shí)解決問(wèn)題的能力,本題解題的關(guān)鍵是正確表示出扇形的面積,再利用基本不等式求解,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知$cos(θ-\frac{π}{2})=\frac{4}{5}$,且sinθ-cosθ>1,則sin(2θ-2π)=( 。
A.$-\frac{24}{25}$B.$-\frac{12}{25}$C.$-\frac{4}{5}$D.$\frac{24}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.對(duì)某校高二年級(jí)學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計(jì)表和頻率分布直方圖如圖:
分組頻數(shù)頻率
[10,15)mp
[15,20)24n
[20,25)40.1
[25,30)20.05
合計(jì)M1
(1)若已知M=40,求出表中m、n、p中及圖中a的值;
(2)若該校高二學(xué)生有240人,試估計(jì)該校高二學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間[10,15)內(nèi)的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若-a2015<a1<-a2016,則必定有( 。
A.a2016<0,且a2017>0B.a2016>0,且a2017<0
C.S2015<0,且S2016>0D.S2015>0,且S2016<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知數(shù)列{an}的各項(xiàng)均為正數(shù),觀察程序框圖,若k=5,k=10時(shí),分別有S=$\frac{5}{11}$和S=$\frac{10}{21}$.
(1)試求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=3n•an,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.下列結(jié)構(gòu)圖中,各要素之間表示從屬關(guān)系的是( 。
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家研究過(guò)各種多邊形數(shù).如三角形數(shù)1,3,6,10,…,第n個(gè)三角形數(shù)為$\frac{n(n+1)}{2}$=$\frac{1}{2}$n2+$\frac{1}{2}$n.記第n個(gè)k邊形數(shù)為N(n,k)(k≥3),以下列出了部分k邊形數(shù)中第n個(gè)數(shù)的表達(dá)式:
三角形數(shù)     N(n,3)=$\frac{1}{2}$n2+$\frac{1}{2}$n
正方形數(shù)      N(n,4)=n2
五邊形數(shù)      $N({n,5})=\frac{3}{2}{n^2}-\frac{1}{2}n$
六邊形數(shù)      N(n,6)=2n2-n

可以推測(cè)N(n,k)的表達(dá)式,由此計(jì)算 N(20,32)=5720.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=ax2-2x+1+lnx
(Ⅰ)若f(x)無(wú)極值點(diǎn),但其導(dǎo)函數(shù)f′(x)有零點(diǎn),求a的取值;
(Ⅱ)若f(x)有兩個(gè)極值點(diǎn),求a的取值范圍,并證明f(x)的極小值小于$-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.設(shè)f(x)=(1+x)ln(1+x)-ax
(Ⅰ)設(shè)x=e-1為函數(shù)f(x)的極值點(diǎn),求a的值,并求f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)≥0恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案