相關(guān)習(xí)題
 0  228893  228901  228907  228911  228917  228919  228923  228929  228931  228937  228943  228947  228949  228953  228959  228961  228967  228971  228973  228977  228979  228983  228985  228987  228988  228989  228991  228992  228993  228995  228997  229001  229003  229007  229009  229013  229019  229021  229027  229031  229033  229037  229043  229049  229051  229057  229061  229063  229069  229073  229079  229087  266669 

科目: 來(lái)源: 題型:填空題

20.若$\overrightarrow{a}$=(1,1),$\overrightarrow$=(1,-1),$\overrightarrow{c}$=(-1,2),則$\overrightarrow{c}$=$\frac{1}{2}$$\overrightarrow{a}$-$\frac{3}{2}$$\overrightarrow$(用$\overrightarrow{a}$,$\overrightarrow$表示)

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=$\frac{a+lnx}{x}$(a∈R).
(1)求函數(shù)f(x)的極值;
(2)若a>1,求證:存在x0∈(0,+∞),使得f(x0)>a.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

18.已知圓C:x2+y2-2x-2y+m=0與兩坐標(biāo)軸都相切,點(diǎn)P在直線l:3x-4y+11=0上,過(guò)點(diǎn)P的直線PA,PB與圓C相切于A,B兩點(diǎn).
(1)求四邊形PACB面積的最小值;
(2)直線l上是否存在點(diǎn)P,使得∠APB=90°?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

17.設(shè)a∈R,函數(shù)f(x)=x2+|x-a|+1,x∈R.
(1)判斷函數(shù)f(x)的奇偶性,并說(shuō)明理由;
(2)當(dāng)a=0時(shí),求出函數(shù)f(x)的單調(diào)區(qū)間;
(3)求f(x)的最小值g(a).

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

16.設(shè)直線l的方程為(a+1)x+y+2-a=0(a∈R).
(1)若直線l不經(jīng)過(guò)第二象限,求實(shí)數(shù)a的取值范圍;
(2)若直線l與兩坐標(biāo)軸圍成的三角形面積等于2,求實(shí)數(shù)a的值.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

15.下表是某地區(qū)的一種傳染病與飲用水的調(diào)查表:
得病不得病合計(jì)
干凈水52466518
不干凈水94218312
合計(jì)146684830
判斷能否以99.9%的把握認(rèn)為“該地區(qū)的傳染病與飲用不干凈的水有關(guān)”
參考數(shù)據(jù):
P(K2≥k00.250.150.100.050.0250.0100.0050.001
k01.3232.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

14.已知數(shù)列{an}中,an=-2n2+λn(n∈N*),若該數(shù)列為單調(diào)遞減數(shù)列,則λ的取值范圍是(-∞,6).

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

13.已知數(shù)列{an}是公差不為0的等差數(shù)列,{bn}是等比數(shù)列,其中a1=3,b1=1,a2=b2,3a5=b3,若存在常數(shù)u,v對(duì)任意正整數(shù)n都有an=3logubn-v,則uv=-9.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

12.已知函數(shù)f(x)在定義域(0,+∞)上是單調(diào)函數(shù),若對(duì)任意x∈(0,+∞),都有f(f(x)-x3)=2,且函數(shù)g(x)=$\frac{{x}^{2}lnx}{f(x)-1}$-a有且只有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)a的取值范圍是(0,$\frac{1}{e}$).

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

11.下面是某港口一天中部分時(shí)刻測(cè)量得到的水深表(時(shí)間單位:小時(shí),水深單位:米)
時(shí)刻0:003:006:009:0012:0015:0018:0021:0024:00
水深6.58.56.54.56.58.56.54.56.5
若該港口水深關(guān)于時(shí)間的函數(shù)可以用y=Asin(ωx+φ)+B(A>0,ω>0,|φ|<$\frac{π}{2}$),x∈[0,24)近似地表示:
(1)試求出函數(shù)的解析式;
(2)某船吃水深度(船底與水面之間的距離)是4米,安全條例規(guī)定要有大于或等于3.5米的安全間隙(船底與海洋底之間的距離),問(wèn)一天中在x∈[0,12]時(shí)間段,若要使此船連續(xù)停泊該港口時(shí)間最長(zhǎng),此船應(yīng)何時(shí)進(jìn)入該港口、何時(shí)離開(kāi)該港口?

查看答案和解析>>

同步練習(xí)冊(cè)答案