相關(guān)習(xí)題
 0  229186  229194  229200  229204  229210  229212  229216  229222  229224  229230  229236  229240  229242  229246  229252  229254  229260  229264  229266  229270  229272  229276  229278  229280  229281  229282  229284  229285  229286  229288  229290  229294  229296  229300  229302  229306  229312  229314  229320  229324  229326  229330  229336  229342  229344  229350  229354  229356  229362  229366  229372  229380  266669 

科目: 來源: 題型:選擇題

11.已知x,y>0且x+4y=1,則$\frac{1}{x}+\frac{1}{y}$的最小值為( 。
A.8B.9C.10D.11

查看答案和解析>>

科目: 來源: 題型:解答題

10.正三棱柱ABC-A1B1C1的底面邊長為a,AA1=$\sqrt{2}$a,求:
(1)三棱柱的體積和側(cè)面積;
(2)AB1與側(cè)面BCC1B1所成的角的大小.

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2})$的圖象與y軸的交點(diǎn)為(0,1),它在y軸右側(cè)的第一個(gè)最高點(diǎn)和第一個(gè)最低點(diǎn)的坐標(biāo)分別為(x0,2)和(x0+2π,-2).
(1)求f(x)的解析式及x0的值;
(2)若$θ∈(0,\frac{π}{3})$且滿足$f(2θ)=\frac{6}{5}$,求cosθ的值.

查看答案和解析>>

科目: 來源: 題型:選擇題

8.已知等比數(shù)列{an}的公比q=2,它的前9項(xiàng)的平均值等于$\frac{511}{3}$,若從中去掉一項(xiàng)am,剩下的8項(xiàng)的平均值等于$\frac{1437}{8}$,則m等于( 。
A.5B.6C.7D.8

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知函數(shù)f(x)=loga(ax2-x+1),其中a>0且a≠1.
(1)當(dāng)a=$\frac{1}{2}$時(shí),求函數(shù)f(x)的值域;
(2)當(dāng)f(x)在區(qū)間$[{\frac{1}{4},\frac{3}{2}}]$上為增函數(shù)時(shí),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

6.有兩個(gè)函數(shù)$f(x)=asin(kx+\frac{π}{3}),g(x)=btan(kx-\frac{π}{4})(k>0)$,它們的最小正周期之和為3π,且滿足$f(2π)=g(\frac{π}{2}),f(\frac{3π}{2})=g(\frac{5π}{12})-2$,求這兩個(gè)函數(shù)的解析式,并求g(x)的對稱中心坐標(biāo)及單調(diào)區(qū)間.

查看答案和解析>>

科目: 來源: 題型:解答題

5.設(shè)有命題p:方程$\frac{x^2}{m-4}-\frac{y^2}{m+2}=1$表示雙曲線,命題q:A?B,其中集合A={(x,y)|x2=y2+m,x∈R,y∈R},B={(x,y)|(x+y)(x-y)>0,x∈R,y∈R}.若“p或?q”為真命題,“p且?q”為假命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

4.設(shè)p:實(shí)數(shù)x滿足x2-4ax+3a2<0(a<0); q:實(shí)數(shù)x滿足x2+2x-8>0,且p是q的充分不必要條件,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

3.已知實(shí)數(shù)x,y滿足條件$\left\{{\begin{array}{l}{x≥0}\\{y≥0}\\{x+y≤2}\end{array}}\right.$,則不等式x+2y≥2成立的概率為(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{3}{4}$D.$\frac{1}{8}$

查看答案和解析>>

科目: 來源: 題型:解答題

2.等差數(shù)列{an}滿足:a1=1,a2+a6=14;正項(xiàng)等比數(shù)列{bn}滿足:b1=2,b3=8.
(Ⅰ) 求數(shù)列{an},{bn}的通項(xiàng)公式an,bn;
(Ⅱ)求數(shù)列{an•bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊答案