相關(guān)習(xí)題
 0  230774  230782  230788  230792  230798  230800  230804  230810  230812  230818  230824  230828  230830  230834  230840  230842  230848  230852  230854  230858  230860  230864  230866  230868  230869  230870  230872  230873  230874  230876  230878  230882  230884  230888  230890  230894  230900  230902  230908  230912  230914  230918  230924  230930  230932  230938  230942  230944  230950  230954  230960  230968  266669 

科目: 來源: 題型:填空題

9.從[0,1]之間選出兩個(gè)數(shù),這兩個(gè)數(shù)的平方和大于l的概率是$1-\frac{π}{4}$.

查看答案和解析>>

科目: 來源: 題型:解答題

8.某重點(diǎn)大學(xué)自主招生考試過程依次為自薦材料審查、筆試、面試共三輪考核.規(guī)定:只能通過前一輪考核才能進(jìn)入下一輪的考核,否則將被淘汰;三輪考核都通過才算通過該高校的自主招生考試.學(xué)生甲三輪考試通過的概率分別為$\frac{2}{3}$,$\frac{3}{4}$,$\frac{4}{5}$,且各輪考核通過與否相互獨(dú)立.
(1)求甲通過該高校自主招生考試的概率;
(2)若學(xué)生甲每通過一輪考核,則家長獎(jiǎng)勵(lì)人民幣1000元作為大學(xué)學(xué)習(xí)的教育基金.記學(xué)生甲得到教育基金的金額為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知a、b、c都是正數(shù),若a+b+c=1,求證:$\frac{1-a}{a}$+$\frac{1-b}$+$\frac{1-c}{c}$≥6.

查看答案和解析>>

科目: 來源: 題型:解答題

6.求實(shí)數(shù)m取什么值時(shí),復(fù)平面內(nèi)表示復(fù)數(shù)z=(m2-8m+15)+(m2-5m-14)i的點(diǎn)位于第四象限.

查看答案和解析>>

科目: 來源: 題型:選擇題

5.若-$\frac{3π}{2}$<θ<-π,則點(diǎn)(tanθ,cosθ)在(  )
A.第一象限B.第三象限C.第二象限D.第四象限

查看答案和解析>>

科目: 來源: 題型:解答題

4.設(shè)函數(shù)f(x)=acos2x+(a-1)(cosx+1),記|f(x)|的最大值為A.
(1)當(dāng)a=2時(shí),求A;
(2)當(dāng)a>0時(shí),求A.

查看答案和解析>>

科目: 來源: 題型:解答題

3.某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了11月1日至11月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如表資料:
    日期11月1日11月2日11月3日11月4日11月5日
溫差x(℃)    8   11  12   13   10
發(fā)芽數(shù)y(顆)   16   25  26   30   23
設(shè)農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對(duì)被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;
(2)若選取的是11月1日與11月5日的兩組數(shù)據(jù),請(qǐng)根據(jù)11月2日至11月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
(注:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n•\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n•{\overline{x}}^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\hat a=\overline y-\hat b\overline x$)

查看答案和解析>>

科目: 來源: 題型:選擇題

2.若復(fù)數(shù)z=$\frac{1-2i}{1+i}$,其中i為虛數(shù)單位,則復(fù)數(shù)z的共軛復(fù)數(shù)為(  )
A.-$\frac{1}{2}$+$\frac{3}{2}$iB.$\frac{1}{2}$-$\frac{3}{2}$iC.-$\frac{1}{2}$-$\frac{3}{2}$iD.$\frac{1}{2}$+$\frac{3}{2}$i

查看答案和解析>>

科目: 來源: 題型:填空題

1.如圖,在△ABC中,MN∥BC,$\frac{AM}{MB}$=$\frac{1}{2}$,MC,NB交于點(diǎn)O,若△OMN的面積等于a,得△OBC的面積等于9a.

查看答案和解析>>

科目: 來源: 題型:解答題

20.公差不為零的等差數(shù)列{an}中,a1,a2,a5成等比數(shù)列,且該數(shù)列的前10項(xiàng)和為100.
(1)求數(shù)列{an}的通項(xiàng)公式;   
(2)若bn=an-10,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案