相關(guān)習(xí)題
 0  231850  231858  231864  231868  231874  231876  231880  231886  231888  231894  231900  231904  231906  231910  231916  231918  231924  231928  231930  231934  231936  231940  231942  231944  231945  231946  231948  231949  231950  231952  231954  231958  231960  231964  231966  231970  231976  231978  231984  231988  231990  231994  232000  232006  232008  232014  232018  232020  232026  232030  232036  232044  266669 

科目: 來源: 題型:解答題

8.已知p:$\frac{1}{x-2}$<1,q:|x-a|<1,若¬p是¬q的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

7.某賣場(chǎng)同時(shí)銷售變頻冷暖空調(diào)機(jī)和智能洗衣機(jī),這兩種產(chǎn)品的市場(chǎng)需求量大,有多少賣多少.今年五一假期該賣場(chǎng)要根據(jù)實(shí)際情況確定產(chǎn)品的進(jìn)貨數(shù)量,以達(dá)到總利潤(rùn)最大.已知兩種產(chǎn)品直接受資金和勞動(dòng)力的限制.根據(jù)過去銷售情況,得到兩種產(chǎn)品的有關(guān)數(shù)據(jù)如表:(表中單位:百元)試問:怎樣確定兩種貨物的進(jìn)貨量,才能使五一期間的總利潤(rùn)最大,最大利潤(rùn)是多少?
資金單位產(chǎn)品所需資金資金供應(yīng)量
空調(diào)機(jī)洗衣機(jī)
成本3020440
勞動(dòng)力:工資710156
單位利潤(rùn)108 

查看答案和解析>>

科目: 來源: 題型:解答題

6.已知函數(shù)f(x)=sin(2ωx-$\frac{π}{6}}$)-4sin2ωx+2({ω>0}),其圖象與x軸相鄰的兩個(gè)交點(diǎn)的距離為$\frac{π}{2}$.
(I)求函數(shù)的f(x)解析式;
(Ⅱ)若將f(x)的圖象向左平移m(m>0)個(gè)長(zhǎng)度單位得到函數(shù)g(x)的圖象恰好經(jīng)過點(diǎn)(${-\frac{π}{3}$,0),求當(dāng)m取得最小值時(shí),g(x)在[${-\frac{π}{6}$,$\frac{7π}{12}}$]上的單調(diào)區(qū)間.

查看答案和解析>>

科目: 來源: 題型:填空題

5.如圖,向邊長(zhǎng)為1的正方形內(nèi)隨機(jī)的投點(diǎn),所投的點(diǎn)落在由y=x2和y=x${\;}^{\frac{1}{2}}}$圍成的封閉圖形的概率為$\frac{1}{3}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

4.已知函數(shù)f(x)=2ex+$\frac{1}{2}$ax2+ax+1有兩個(gè)極值,則實(shí)數(shù)a的取值范圍為( 。
A.(-∞,-2]B.(-∞,-2)C.(-2,+∞)D.(-∞,2)

查看答案和解析>>

科目: 來源: 題型:解答題

3.已知函數(shù)f(x)=mx-$\frac{m-1+2e}{x}$-lnx,m∈R,e為自然對(duì)數(shù)的底數(shù),函數(shù)g(x)=$\frac{1}{xcosθ}$+lnx在區(qū)間[1,+∞)內(nèi)為增函數(shù),且θ∈(-$\frac{π}{2}$,$\frac{π}{2}$).
(1)當(dāng)m=0時(shí),求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(2)若當(dāng)x∈[1,e]時(shí),至少存在一個(gè)x0,使得f(x0)>g(x0)成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

2.已知拋物線C:y2=2px(p>0)的焦點(diǎn)F與橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的右焦點(diǎn)重合,拋物線C的準(zhǔn)線l與x軸的交點(diǎn)為M,過點(diǎn)M且斜率為k的直線l1交拋物線C于A,B兩點(diǎn),線段AB的中點(diǎn)為P,直線PF與拋物線C交于D,E兩點(diǎn)
(Ⅰ)求拋物線C的方程;
(Ⅱ)若λ=$\frac{|MA|•|MB|}{|FD|•|FE|}$,寫出λ關(guān)于k的函數(shù)解析式,并求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

1.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{\sqrt{2}}{2}$,且橢圓上一點(diǎn)M與橢圓左右兩個(gè)焦點(diǎn)構(gòu)成的三角形周長(zhǎng)為4+2$\sqrt{2}$.
(1)求橢圓C的方程;
(2)如圖,設(shè)點(diǎn)D為橢圓上任意一點(diǎn),直線y=m和橢圓C交于A、B兩點(diǎn),且直線DA、DB與y軸分別交于P、Q兩點(diǎn),試探究∠PF1F2和∠QF1F2之間的等量關(guān)系并加以證明.

查看答案和解析>>

科目: 來源: 題型:選擇題

20.設(shè)平面向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$都是單位向量,且向量$\overrightarrow{a}$,$\overrightarrow$的夾角為60°,若$\overrightarrow{c}$=2x$\overrightarrow{a}$+y$\overrightarrow$,其中x,y為正實(shí)數(shù),則xy的最大值為( 。
A.$\frac{1}{6}$B.$\frac{1}{5}$C.$\frac{1}{4}$D.$\frac{1}{3}$

查看答案和解析>>

科目: 來源: 題型:填空題

19.如圖,在?ABCD中,點(diǎn)E為邊AB的中點(diǎn),BD與CE交于點(diǎn)P,若$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AD}$(x,y∈R),則2x+y=$\frac{5}{3}$;若點(diǎn)Q是△BCP內(nèi)部(包括邊界)一動(dòng)點(diǎn),且$\overrightarrow{AQ}$=m$\overrightarrow{AB}$+n$\overrightarrow{AD}$(m,n∈R),則m+2n的取值范圍為[1,3].

查看答案和解析>>

同步練習(xí)冊(cè)答案