相關(guān)習(xí)題
 0  233140  233148  233154  233158  233164  233166  233170  233176  233178  233184  233190  233194  233196  233200  233206  233208  233214  233218  233220  233224  233226  233230  233232  233234  233235  233236  233238  233239  233240  233242  233244  233248  233250  233254  233256  233260  233266  233268  233274  233278  233280  233284  233290  233296  233298  233304  233308  233310  233316  233320  233326  233334  266669 

科目: 來(lái)源: 題型:選擇題

20.在△ABC中,a,b,c分別為角A,B,C的對(duì)邊,且cos2B+cosB+cos(C-A)=1,則( 。
A.a,b,c成等比數(shù)列B.a,b,c成等差數(shù)列C.a,c,b成等比數(shù)列D.a,c,b成等差數(shù)列

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

19.在△ABC中,“A>$\frac{π}{3}$”是“sinA>$\frac{\sqrt{3}}{2}$”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

18.函數(shù)f(x)=x3+cos($\frac{π}{2}$-x)+1,若f(a)=2,則f(-a)的值為( 。
A.3B.0C.-1D.-2

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

17.給出下列演繹推理:“整數(shù)是有理數(shù),___,所以-3是有理數(shù)”,如果這個(gè)推理是正確的,則其中橫線部分應(yīng)填寫(xiě)-3是整數(shù).

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

16.若函數(shù)y=tanθ+$\frac{cos2θ+1}{sin2θ}$(0<θ<$\frac{π}{2}$),則函數(shù)y的最小值為2.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}1-|{x+1}|,x∈[-2,0]\\ 2f(x-2),x∈(0,+∞)\end{array}$,若函數(shù)h(x)=f(x)-x-a在區(qū)間[-2,4]內(nèi)有3個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是(-2,0)∪{1}.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

14.平面向量$\overrightarrow a$=(m,1),$\overrightarrow b$=(1,2),若$\overrightarrow a$⊥$\overrightarrow b$,則實(shí)數(shù)m的值為-2.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

13.已知f(x)是可導(dǎo)的函數(shù),且f′(x)<f(x)對(duì)于x∈R恒成立,則( 。
A.f(1)<ef(0),f(2 014)>e2014f(0)B.f(1)>ef(0),f(2 014)>e2014f(0)
C.f(1)>ef(0),f(2 014)<e2014f(0)D.f(1)<ef(0),f(2 014)<e2014f(0)

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

12.已知定義在[-1,1]上的函數(shù)f(x)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),且函數(shù)f(x)在[-1,1]上為減函數(shù).
(1)證明:當(dāng)x1+x2≠0時(shí),$\frac{f({x}_{1})+f({x}_{2})}{{x}_{1}+{x}_{2}}$<0;
(2)若f(m2-1)+f(m-1)>0,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

11.?dāng)?shù)列{an}的前n項(xiàng)和記為Sn,a1=1,an+1=2Sn+1(n≥1).
(1)求{an}的通項(xiàng)公式;
(2)求Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案