相關(guān)習(xí)題
 0  234592  234600  234606  234610  234616  234618  234622  234628  234630  234636  234642  234646  234648  234652  234658  234660  234666  234670  234672  234676  234678  234682  234684  234686  234687  234688  234690  234691  234692  234694  234696  234700  234702  234706  234708  234712  234718  234720  234726  234730  234732  234736  234742  234748  234750  234756  234760  234762  234768  234772  234778  234786  266669 

科目: 來源: 題型:解答題

10.從4張拾圓,4張貳拾圓,2張伍拾圓的人民幣中任取3張,求總值超過捌拾圓的概率.

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知函數(shù)f(x)=(a-$\frac{1}{2}$)x2+lnx(a∈R).
(I)若函數(shù)f(x)在點(diǎn)(1,f(1))處的切線方程為2x+y+b=0,求a,b的值;
(II)若在區(qū)間(1,+∞)上,函數(shù)f(x)的圖象恒在直線y=2ax下方,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

8.設(shè)△ABC的內(nèi)角為A,B,C,且sinC=sinB+sin(A-B).
(I)求A的大小;
(II)若a=$\sqrt{7}$,△ABC的面積S△ABC=$\frac{{3\sqrt{3}}}{2}$,求△ABC的周長.

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知函數(shù)f(x)=2cos2$\frac{x}{2}$-2$\sqrt{3}$sin$\frac{x}{2}$cos$\frac{x}{2}$-1,x∈R.
(I)求使得取f(x)得最大值的x的取值集合;
(II)若g(x)=x+f(x),求g(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目: 來源: 題型:解答題

6.某城市100戶居民的月平均用電量(單位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分組的頻率分布直方圖如圖.
(1)求直方圖中x的值;
(2)求月平均用電量的眾數(shù)和中位數(shù).

查看答案和解析>>

科目: 來源: 題型:解答題

5.在直角坐標(biāo)系xOy中,已知一動(dòng)圓經(jīng)過點(diǎn)(2,0)且在y軸上截得的弦長為4,設(shè)動(dòng)圓圓心的軌跡為曲線C.
(1)求曲線C的方程;
(2)過點(diǎn)(1,0)作互相垂直的兩條直線l1,l2,l1與曲線C交于A,B兩點(diǎn)l2與曲線C交于E,F(xiàn)兩點(diǎn),線段AB,EF的中點(diǎn)分別為M,N,求證:直線MN過定點(diǎn)P,并求出定點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目: 來源: 題型:解答題

4.某中學(xué)為了普及法律知識(shí),舉行了一次法律知識(shí)競賽活動(dòng).下面的莖葉圖記錄了男生、女生各10名學(xué)生在該次競賽活動(dòng)中的成績(單位:分).
已知男、女生成績的平均值相同.
(1)求a的值;
(2)從成績高于86分的學(xué)生中任意抽取3名學(xué)生,求恰有2名學(xué)生是女生的概率.

查看答案和解析>>

科目: 來源: 題型:選擇題

3.某幾何體的三視圖如圖所示,則此幾何體的外接球表面積等于( 。  
A.$\frac{75π}{2}$B.30πC.43πD.15π

查看答案和解析>>

科目: 來源: 題型:解答題

2.已知函數(shù)f(x)=$\frac{1}{x-1}$+1.
(1)證明:函數(shù)f(x)在(1,+∞)上遞減;
(2)記函數(shù)g(x)=f(x+1)-1,判斷函數(shù)g(x)的奇偶性,并加以證明.

查看答案和解析>>

科目: 來源: 題型:選擇題

1.在圓x2+y2=4上任取一點(diǎn)P,過點(diǎn)P作x軸的垂線段PD,D為垂足,線段PD中點(diǎn)為M,當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),點(diǎn)M到直線l:x-y+1=0距離最大值為( 。
A.$\frac{{\sqrt{10}+\sqrt{2}}}{2}$B.$\frac{{\sqrt{10}-\sqrt{2}}}{2}$C.$\frac{{3\sqrt{2}}}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案