科目: 來源: 題型:
【題目】設(shè)銳角△ABC的三內(nèi)角A、B、C所對邊的邊長分別為a、b、c,且 a=1,B=2A,則b的取值范圍為( )
A.( , )
B.(1, )
C.( ,2)
D.(0,2)
查看答案和解析>>
科目: 來源: 題型:
【題目】已知點,橢圓 的離心率為是橢圓的右焦點,直線的斜率為為坐標原點.
(1)求的方程;
(2)設(shè)過點的動直線與相交于兩點,當的面積最大時,求的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知數(shù)列{an}滿足a1= ,an= (n≥2,n∈N).
(1)試判斷數(shù)列 是否為等比數(shù)列,并說明理由;
(2)設(shè)bn= ,求數(shù)列{bn}的前n項和Sn;
(3)設(shè)cn=ansin ,數(shù)列{cn}的前n項和為Tn . 求證:對任意的n∈N* , Tn< .
查看答案和解析>>
科目: 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且bsinA=acosB.
(1)求角B的大小;
(2)若b=3,sinC=2sinA,求a,c的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知過原點的動直線l與圓相交于不同的兩點A,B.
(1)求線段AB的中點M的軌跡C的方程;
(2)是否存在實數(shù)k,使得直線L:y=k(x﹣4)與曲線C只有一個交點?若存在,求出k的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn,且Sn=2n2+n,n∈N,數(shù)列{bn}滿足an=4log2bn+3,n∈N.
(1)求an,bn;
(2)求數(shù)列{anbn}的前n項和Tn.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知平面內(nèi)的動點P到定直線l:x=的距離與點P到定點F(,0)之比為.
(1)求動點P的軌跡C的方程;
(2)若點N為軌跡C上任意一點(不在x軸上),過原點O作直線AB,交(1)中軌跡C于點A、B,且直線AN、BN的斜率都存在,分別為k1、k2,問k1·k2是否為定值?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知雙曲線 (a>0,b>0)的右準線l2與一條漸近線l交于點P,F是雙曲線的右焦點.
(1)求證:PF⊥l;
(2)若PF=3,且雙曲線的離心率e=,求該雙曲線的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線,圓,圓心到拋物線準線的距離為3,點是拋物線在第一象限上的點,過點作圓的兩條切線,分別與軸交于兩點.
(1)求拋物線的方程;
(2)求面積的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】上世紀八十年代初, 鄧小平同志曾指出“在人才的問題上,要特別強調(diào)一下,必須打破常規(guī)去發(fā)現(xiàn)、選拔和培養(yǎng)杰出的人才”. 據(jù)此,經(jīng)省教育廳批準,某中學(xué)領(lǐng)導(dǎo)審時度勢,果斷作出于1985年開始施行超常實驗班教學(xué)試驗的決定.一時間,學(xué)生興奮,教師欣喜,家長歡呼,社會熱議.該中學(xué)實驗班一路走來,可謂風(fēng)光無限,碩果累累,尤其值得一提的是,1990年,全國共招收150名少年大學(xué)生,該中學(xué)就有19名實驗班學(xué)生被錄取,占全國的十分之一,轟動海內(nèi)外.設(shè)該中學(xué)超常實驗班學(xué)生第x年被錄取少年大學(xué)生的人數(shù)為y.
左下表為該中學(xué)連續(xù)5年實驗班學(xué)生被錄取少年大學(xué)生人數(shù),求y關(guān)于x的線性回歸方程,并估計第6年該中學(xué)超常實驗班學(xué)生被錄取少年大學(xué)生人數(shù);
年份序號x | 1 | 2 | 3 | 4 | 5 |
錄取人數(shù)y | 10 | 11 | 14 | 16 | 19 |
附1:
下表是從該校已經(jīng)畢業(yè)的100名高中生錄取少年大學(xué)生人數(shù)與是否接受超常實驗班教育得到
2×2列聯(lián)表,完成上表,并回答:是否有95%以上的把握認為“錄取少年大學(xué)生人數(shù)與是否接受超常實驗班教育有關(guān)系”.
附2:
接受超常實驗班教育 | 未接受超常實驗班教育 | 合計 | |
錄取少年大學(xué)生 | 60 | 80 | |
未錄取少年大學(xué)生 | 10 | ||
合計 | 30 | 100 |
0.50 | 0.40 | 0.10 | 005 | |
0.455 | 0.708 | 2.706 | 3.841 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com