科目: 來源: 題型:
【題目】某超市在元旦期間開展優(yōu)惠酬賓活動,凡購物滿100元可抽獎一次,滿200元可抽獎兩次…依此類推.抽獎箱中有7個白球和3個紅球,其中3個紅球上分別標(biāo)有10元,10元,20元字樣.每次抽獎要從抽獎箱中有放回地任摸一個球,若摸到紅球,根據(jù)球上標(biāo)注金額獎勵現(xiàn)金;若摸到白球,沒有任何獎勵.
(Ⅰ)一次抽獎中,已知摸中了紅球,求獲得20元獎勵的概率;
(Ⅱ)小明有兩次抽獎機(jī)會,用表示他兩次抽獎獲得的現(xiàn)金總額,寫出的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】有一名同學(xué)家開了一個小賣部,他為了研究氣溫對某種引領(lǐng)銷售的影響,記錄了2015年7月至12月每月15號下午14時的氣溫和當(dāng)天的飲料杯數(shù),得到如下資料:
該同學(xué)確定的研究方案是:現(xiàn)從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)取線性回歸方程,再用被選中的2組數(shù)據(jù)進(jìn)行檢驗.
(1)求選取2組數(shù)據(jù)恰好是相鄰兩個月的概率;
(2)若選中的是8月與12月的兩組數(shù)據(jù),根據(jù)剩下的4組數(shù)據(jù),求出關(guān)于的線性回歸方程;
(3)若有線性回歸方程得到估計,數(shù)據(jù)與所宣稱的檢驗數(shù)據(jù)的誤差不超過3杯,則認(rèn)為得到的線性回歸方程是理想的,請問(2)所得線性回歸方程是否理想.
附:對于一組數(shù)據(jù),其回歸直線 的斜率和截距的最小二乘法估計分別為: , , .
查看答案和解析>>
科目: 來源: 題型:
【題目】已知f(x)=ex-ax-1.
(1)求f(x)的單調(diào)增區(qū)間;
(2)若f(x)在定義域R內(nèi)單調(diào)遞增,求a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),),以原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)已知點是曲線上一點,若點到曲線的最小距離為,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù) .
(1)當(dāng)時,求函數(shù)的極值;
(2)是否存在實數(shù),使得當(dāng)時,函數(shù)的最大值為?若存在,取實數(shù)的取值范圍,若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四棱錐中,底面為梯形, 底面, , , , .
(1)求證:平面 平面;
(2)設(shè)為上的一點,滿足,若直線與平面所成角的正切值為,求二面角的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】根據(jù)某水文觀測點的歷史統(tǒng)計數(shù)據(jù),得到某河流水位(單位:米)的頻率分布直方圖如下:將河流水位在以上6段的頻率作為相應(yīng)段的概率,并假設(shè)每年河流水位互不影響.
(Ⅰ)求未來三年,至多有1年河流水位的概率(結(jié)果用分?jǐn)?shù)表示);
(Ⅱ)該河流對沿河企業(yè)影響如下:當(dāng)時,不會造成影響;當(dāng)時,損失10000元;當(dāng)時,損失60000元,為減少損失,現(xiàn)有三種應(yīng)對方案:
方案一:防御35米的最高水位,需要工程費(fèi)用3800元;
方案二:防御不超過31米的水位,需要工程費(fèi)用2000元;
方案三:不采用措施:試比較哪種方案較好,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com