科目: 來源: 題型:
【題目】,兩組各有7位病人,他們服用某種藥物后的康復時間(單位:天)記錄如下:
組:10,11,12,13,14,15,16
組:12,13,15,16,17,14,
假設所有病人的康復時間互相獨立,從,兩組隨機各選1人,組選出的人記為甲,組選出的
人記為乙.
(Ⅰ)求甲的康復時間不少于14天的概率;
(Ⅱ)如果,求甲的康復時間比乙的康復時間長的概率;
(Ⅲ)當為何值時,,兩組病人康復時間的方差相等?(結論不要求證明)
查看答案和解析>>
科目: 來源: 題型:
【題目】近年來,某市為了促進生活垃圾的分類處理,將生活垃圾分為廚余垃圾、可回收物和其他垃圾三類,并分別設置了相應的分類垃圾箱.為調查居民生活垃圾分類投放情況,現隨機抽取了該市三類垃圾箱中總計1 000噸生活垃圾,數據統(tǒng)計如下(單位:噸):
“廚余垃圾”箱 | “可回收物”箱 | “其他垃圾”箱 | |
廚余垃圾 | 400 | 100 | 100 |
可回收物 | 30 | 240 | 30 |
其他垃圾 | 20 | 20 | 60 |
(1)試估計廚余垃圾投放正確的概率P;
(2)試估計生活垃圾投放錯誤的概率;
(3)假設廚余垃圾在“廚余垃圾”箱,“可回收物”箱,“其他垃圾”箱的投放量分別為a、b、c,其中a>0,a+b+c=600. 當數據a、b、c的方差s2最大時,寫出a、b、c的值(結論不要求證明),并求出此時s2的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】一種電路控制器在出廠時,每3件一等品應裝成一箱,工人裝箱時,不小心將2件二等品和1件一等品裝入了一箱,為了找出該箱中的二等品,對該箱中的產品逐件進行測試,假設檢測員不知道該箱產品中二等品的具體數量,求:
(1)僅測試2件就找到全部二等品的概率;
(2)測試的第2件產品是二等品的概率;
(3)到第3次才測試出全部二等品的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】某企業(yè)2017年的純利潤為500萬元,因設備老化等原因,企業(yè)的生產能力逐年下降,若不能進行技術改造,預測從2018年起每年比上一年純利潤減少20萬元,2018年初該企業(yè)一次性投入資金600萬元進行技術改造,預測在未扣除技術改造資金的情況下,第年(以2018年為第一年)的利潤為萬元(為正整數).
(1)設從今年起的前年,若該企業(yè)不進行技術改造的累計純利潤為萬元,進行技術改造后的累計純利潤為萬元(須扣除技術改造資金),求,的表達式;
(2)依上述預測,從2018年起該企業(yè)至少經過多少年,進行技術改造后的累計利潤超過不進行技術改造的累計純利潤?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的右焦點為,坐標原點為.橢圓的動弦過右焦點且不垂直于坐標軸, 的中點為,過且垂直于線段的直線交射線于點
(I)證明:點在直線上;
(Ⅱ)當四邊形是平行四邊形時,求的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】農科院的專家為了了解新培育的甲、乙兩種麥苗的長勢情況,從種植有甲、乙兩種麥苗的兩塊試驗田中各抽取6株麥苗測量株高,得到的數據如下(單位:cm):
甲:9,10,11,12,10,20;
С:8,14,13,10,12,21.
(1)選擇合適的統(tǒng)計圖表表示上述數據;
(2)分別計算兩組數據的平均數與方差,并由此判斷甲、乙兩種麥苗的長勢情況.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖是一個半徑為2千米,圓心角為的扇形游覽區(qū)的平面示意圖是半徑上一點,是圓弧上一點,且.現在線段,線段及圓弧三段所示位置設立廣告位,經測算廣告位出租收入是:線段處每千米為元,線段及圓弧處每千米均為元.設弧度,廣告位出租的總收入為元.
(1)求關于的函數解析式,并指出該函數的定義域;
(2)試問:為何值時,廣告位出租的總收入最大?并求出其最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com