科目: 來源: 題型:
【題目】某學(xué)習(xí)小組在生物研究性學(xué)習(xí)中,對春季晝夜溫差大小與黃豆種子發(fā)芽多少之間的關(guān)系進(jìn)行研究,于是小組成員在3月份的31天中隨機(jī)挑選了5天進(jìn)行研究,且分別記錄了每天晝夜溫差與每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下資料:
日期 | 3月2日 | 3月8日 | 3月15日 | 3月22日 | 3月28日 |
溫差/ | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)/顆 | 23 | 25 | 30 | 26 | 14 |
(1)在這個學(xué)習(xí)小組中負(fù)責(zé)統(tǒng)計數(shù)據(jù)的那位同學(xué)為了減少計算量,他從這5天中去掉了3月2日與3月28日的兩組數(shù)據(jù),請根據(jù)這5天中的另三天的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(2)若由線性回歸方程得到的估計數(shù)據(jù)與所去掉的試驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?
(參考公式:,)(參考數(shù)據(jù):,)
查看答案和解析>>
科目: 來源: 題型:
【題目】公元263年左右,我國古代數(shù)學(xué)家劉徽用圓內(nèi)接正多邊形的面積去逼近圓的面積求圓周率,他從單位圓內(nèi)接正六邊形算起,令邊數(shù)一倍一倍地增加,即12,24,48,…,192,…,逐個算出正六邊形,正十二邊形,正二十四邊形,…,正一百九十二邊形,…的面積,這些數(shù)值逐步地逼近圓面積,劉徽算到了正一百九十二邊形,這時候的近似值是3.141024,劉徽稱這個方法為“割圓術(shù)”,并且把“割圓術(shù)”的特點(diǎn)概括為“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”.劉徽這種想法的可貴之處在于用已知的、可求的來逼近未知的、要求的,用有限來逼近無窮,這種思想極其重要,對后世產(chǎn)生了巨大影響.按照上面“割圓術(shù)”,用正二十四邊形來估算圓周率,則的近似值是( )(精確到).(參考數(shù)據(jù))
A.3.14B.3.11C.3.10D.3.05
查看答案和解析>>
科目: 來源: 題型:
【題目】對于定義域?yàn)?/span>R的函數(shù)y=f(x),部分x與y的對應(yīng)關(guān)系如表:
x | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 |
y | 0 | 2 | 3 | 2 | 0 | ﹣1 | 0 | 2 |
(1)求f{f[f(0)]};
(2)數(shù)列{xn}滿足x1=2,且對任意n∈N*,點(diǎn)(xn,xn+1)都在函數(shù)y=f(x)的圖象上,求x1+x2+…+x4n;
(3)若y=f(x)=Asin(ωx+φ)+b,其中A>0,0<ω<π,0<φ<π,0<b<3,求此函數(shù)的解析式,并求f(1)+f(2)+…+f(3n)(n∈N*).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓C: =1(a>b>0),定義橢圓C上的點(diǎn)M(x0,y0)的“伴隨點(diǎn)”為.
(1)求橢圓C上的點(diǎn)M的“伴隨點(diǎn)”N的軌跡方程;
(2)如果橢圓C上的點(diǎn)(1,)的“伴隨點(diǎn)”為(,),對于橢圓C上的任意點(diǎn)M及它的“伴隨點(diǎn)”N,求的取值范圍;
(3)當(dāng)a=2,b=時,直線l交橢圓C于A,B兩點(diǎn),若點(diǎn)A,B的“伴隨點(diǎn)”分別是P,Q,且以PQ為直徑的圓經(jīng)過坐標(biāo)原點(diǎn)O,求△OAB的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖ABC﹣A1B1C1是直三棱柱,底面△ABC是等腰直角三角形,且AB=AC=4,直三棱柱的高等于4,線段B1C1的中點(diǎn)為D,線段BC的中點(diǎn)為E,線段CC1的中點(diǎn)為F.
(1)求異面直線AD、EF所成角的大;
(2)求三棱錐D﹣AEF的體積.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知平面直角坐標(biāo)系,以為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的參數(shù)方程為(為參數(shù)),點(diǎn)時曲線上兩點(diǎn),點(diǎn)的極坐標(biāo)分別為,.
(1)寫出曲線的普通方程和極坐標(biāo)方程;
(2)求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知圓與拋物線有一條斜率為1的公共切線.
(1)求.
(2)設(shè)與拋物線切于點(diǎn),作點(diǎn)關(guān)于軸的對稱點(diǎn),在區(qū)域內(nèi)過作兩條關(guān)于直線對稱的拋物線的弦,.連接.
①求證:;
②設(shè)面積為,求的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某市對各老舊小區(qū)環(huán)境整治效果進(jìn)行滿意度測評,共有10000人參加這次測評(滿分100分,得分全為整數(shù)).為了解本次測評分?jǐn)?shù)情況,從中隨機(jī)抽取了部分人的測評分?jǐn)?shù)進(jìn)行統(tǒng)計,整理見下表:
組別 | 分組 | 頻數(shù) | 頻率 |
1 | 3 | 0.06 | |
2 | 15 | 0.3 | |
3 | 21 | ||
4 | 3 | 0.12 | |
5 | 0.1 | ||
合計 | 1.00 |
(1)求出表中,,的值;
(2)若分?jǐn)?shù)在80(含80分)以上表示對該項目“非常滿意”,其中分?jǐn)?shù)在90(含90分)以上表示“十分滿意”,現(xiàn)從被抽取的“非常滿意“人群中隨機(jī)抽取2人,求至少有一人分?jǐn)?shù)是“十分滿意”的概率;
(3)請你根據(jù)樣本數(shù)據(jù)估計全市的平均測評分?jǐn)?shù)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com