0  1151  1159  1165  1169  1175  1177  1181  1187  1189  1195  1201  1205  1207  1211  1217  1219  1225  1229  1231  1235  1237  1241  1243  1245  1246  1247  1249  1250  1251  1253  1255  1259  1261  1265  1267  1271  1277  1279  1285  1289  1291  1295  1301  1307  1309  1315  1319  1321  1327  1331  1337  1345  3002 

1. 設(shè)A是集合S={1, 2, 3, ..., 1000000}的一個(gè)101元子集,求證: 存在S中的100個(gè)元素T1 ,T2 ,...,T100 使得集合

Aj={X+Tj | X 屬于 A} (j=1,2,...,100)


是兩兩不交的。

2. 求所有的正整數(shù)對(duì)(a,b),使得 a2/(2ab2-b3+1)也為整數(shù)。

3. 一凸六邊形,任意一組對(duì)邊中點(diǎn)的連線(xiàn)是這組對(duì)邊長(zhǎng)度之和的√3/2 倍,求證這個(gè)六邊行的
每個(gè)內(nèi)角都是120o。

4. 圓內(nèi)接四邊形ABCD,從D向分別邊BC,CA,AB引垂線(xiàn),垂足分別為P,Q,R。求證:
PQ=QR當(dāng)且僅當(dāng)∠ABC、∠ADC的角平分線(xiàn)及AC三線(xiàn)共點(diǎn)。

5. 設(shè)n是一個(gè)正整數(shù),x1,x2,...,xn是實(shí)數(shù)并且x1 ≤ x2 ≤ ... ≤ xn,求證:

6. 設(shè)p是一個(gè)素?cái)?shù),求證存在一個(gè)素?cái)?shù)q使得對(duì)每個(gè)整數(shù)n,np-p不能被q整除。

 

試題詳情

1. 設(shè)n是給定的正整數(shù),T是一個(gè)集合,其元素是平面上滿(mǎn)足x,y是非負(fù)整數(shù)且x+y<n的點(diǎn)(x,y)。T中的點(diǎn)均被染上紅色或藍(lán)色,滿(mǎn)足:如果(x,y)是紅色,則所有滿(mǎn)足x'≤xy'≤y的點(diǎn)(x',y')也都染成紅色。如果n個(gè)藍(lán)點(diǎn)的橫坐標(biāo)各不相同,則稱(chēng)由這n個(gè)藍(lán)點(diǎn)組成的集合為一個(gè)X-集;如果n個(gè)藍(lán)點(diǎn)的縱坐標(biāo)各不相同,則稱(chēng)這n個(gè)藍(lán)點(diǎn)所組成的集合為Y-集。

求證:X-集的個(gè)數(shù)和Y-集的個(gè)數(shù)相同。

2. BC為圓O的直徑,AO上的一點(diǎn),0o<∠AOB <120o, D是弧AB(不含C的。┑闹悬c(diǎn),過(guò)O平行于DA的直線(xiàn)交AC I,OA的垂直平分線(xiàn)交OE、F,

求證:I是△CEF的內(nèi)心。

3. 找出所有的正整數(shù)對(duì)m,n≥3,是的存在無(wú)窮多個(gè)正整數(shù)a,使(am +a-1)/(an +a2-1)為整數(shù)。

4. 設(shè)n為大于1的整數(shù),全部正因數(shù)為d1,d2,...,dk, 其中1=d1 < d2 < ... < dk=n,

D=d1d2+d2d3+...+dk-1dk。

5. 找出所有從實(shí)數(shù)集RR的函數(shù)f,使得對(duì)所有x,y,z∈R,有

(f(x)+f(z))(f(y)+f(t))=f(xy-zt)+f(xt+yz)。

6. 設(shè)Γ1,Γ2,...,Γn是平面上半徑為1的圓,其中n≥3,記他們的圓心分別為O1,O2,...,On。假設(shè)任意一條直線(xiàn)都至多和兩個(gè)圓相交或相切,

求證:

i<j 1/OiOj ≤ (n-1)π/4 。

 

試題詳情

1. △ABC是銳角三角形,其外接圓的圓心是O。X是從ABC邊上垂線(xiàn)的垂足。
已知∠C≥∠B+30o,

求證:∠A+∠COX<90o。

2. a,b,c是正實(shí)數(shù),設(shè)a' = √(a2 + 8bc), b' = √(b2 + 8ca), c' = √(c2 + 8ab),

求證: a/a' + b/b' + c/c' ≥ 1。

3. 由整數(shù)組成的一個(gè)21×21的矩陣,其每行每列都至多有6個(gè)不同的整數(shù)。

求證,存在某個(gè)整數(shù)出現(xiàn)在至少3行和3列中。

4. 設(shè)n1,n2,...,nm是整數(shù),其中m是奇數(shù)。x=(x1,x2,...,xm)1,2,...,m的一個(gè)排列,

f(x)=x1n1+x2n2+...+xmnm, 

求證,存在兩個(gè)不同的排列a,b使得f(a)-f(b)能被m!整除。

5. △ABC,XBC上且AX∠A的角平分線(xiàn),BY∠B的角平分線(xiàn),YCA上。已知∠A=60o, AB+BX=AY+YB,試求出所有∠B可能的值。

6. K>L>M>N是正整數(shù)且KM+LN=(K+L-M+N)(-K+L+M+N)

求證KL+MN是合數(shù)。

 

試題詳情

1. 圓Γ1和圓Γ2相交于點(diǎn)MN。設(shè)l是圓Γ1和圓Γ2的兩條公切線(xiàn)中距離M較近的那條公切線(xiàn)。l與圓Γ1相切于點(diǎn)A,與圓Γ2相切于點(diǎn)B。設(shè)經(jīng)過(guò)點(diǎn)M且與l平行的直線(xiàn)與圓Γ1還相交于點(diǎn)C,與圓Γ2還相交于點(diǎn)D。直線(xiàn)CADB相交于點(diǎn)E;直線(xiàn)ANCD相交于點(diǎn)P;直線(xiàn)BNCD相交于點(diǎn)Q。

求證:EP=EQ。

2. 設(shè)a,b,c是正實(shí)數(shù),且滿(mǎn)足abc=1。求證:

(a- 1 + 1/b)(b - 1 + 1/c)(c - 1 + 1/a) ≤ 1。

3. 設(shè)n≥2為正整數(shù)。開(kāi)始時(shí),在一條直線(xiàn)上有n只跳蚤,且它們不全在同一點(diǎn)。
對(duì)任意給定的一個(gè)正實(shí)數(shù)λ,可以定義如下的一種“移動(dòng)”:

試確定所有可能的正實(shí)數(shù)λ, 使得對(duì)于直線(xiàn)上任意給定的點(diǎn)M以及這n只跳蚤的任意初始位置,總能夠經(jīng)過(guò)有限多個(gè)移動(dòng)之后令所有的跳蚤都位于M的右邊。

4. 一位魔術(shù)師有一百?gòu)埧ㄆ,分別寫(xiě)有數(shù)字1100. 他把這一百?gòu)埧ㄆ湃肴齻(gè)盒子里,一個(gè)盒子是紅色的,一個(gè)是白色的,一個(gè)是藍(lán)色的。 每個(gè)盒子里至少都放入了一張卡片。 一位觀(guān)眾從三個(gè)盒子中挑出兩個(gè),再?gòu)倪@兩個(gè)盒子里各選取一張卡片, 然后宣布這兩張卡片上的數(shù)字之和。知道這個(gè)和之后,魔術(shù)師便能夠指出哪一個(gè)是沒(méi)有從中選取卡片的盒子。 

問(wèn)共有多少種放卡片的方法,使得魔術(shù)總能夠成功?(兩種方法被認(rèn)為是不同的,如果至少有一張卡片被放入不同顏色的盒子)

5. 確定是否存在滿(mǎn)足下列條件的正整數(shù)nn恰好能夠被2000個(gè)互不相同的質(zhì)數(shù)整除,且2n+1能夠被n整除。

6. 設(shè)AH1,BH2,CH3是銳角三角形ABC的三條高線(xiàn)。 三角形ABC的內(nèi)切圓與邊BC, CA, AB分別相切于點(diǎn)T1, T2, T3,設(shè)直線(xiàn)l1,l2,l3分別是直線(xiàn)H2H3, H3H1, H1H2關(guān)于直線(xiàn)T2T3, T3 T1, T1T2的對(duì)稱(chēng)直線(xiàn)。
求證:l1,l2,l3所確定的三角形,其頂點(diǎn)都在三角形ABC的內(nèi)切圓上。

 

試題詳情

1. 試找出所有這樣的有限集SS至少包括平面上的3個(gè)點(diǎn);對(duì)任何兩個(gè)S中不同的點(diǎn)A,B,
AB的垂直平分線(xiàn)是S的一個(gè)對(duì)稱(chēng)軸。

2. 設(shè)n ≥ 2是一個(gè)給定的整數(shù),是找出最小的常量C使得對(duì)于所有非負(fù)實(shí)數(shù)x1, ... , xn如下不等式成立:

i<j xi xj (xi2 + xj2) ≤ C ( ∑ xi )4。


并判斷何時(shí)等號(hào)成立。

3. 給定一個(gè)n×n的棋盤(pán),n是偶數(shù)。如果這個(gè)棋盤(pán)中的兩個(gè)不同的小方格有一個(gè)公共邊就說(shuō)他們是相鄰的,但同一個(gè)方格不認(rèn)為與它自身相鄰。試找出最小數(shù)目的方格,使得當(dāng)它們被標(biāo)記之后,棋盤(pán)上每一個(gè)方格都至少與一個(gè)標(biāo)記過(guò)的方格相鄰。

4. 試找出所有的正整數(shù)對(duì)(n,p),使得p是素?cái)?shù),n ≤ 2p并且(p-1)n+1可被np-1整除。

5. 圓Γ有兩個(gè)內(nèi)切圓Γ1 2,切點(diǎn)分別是M,N,Γ1經(jīng)過(guò)Γ2的圓心。
Γ12的公共弦的延長(zhǎng)線(xiàn)交ΓA,B兩點(diǎn)。線(xiàn)MA,MB分別交Γ1分別于E,F。
求證:EFΓ2相切。

6. 試找出所有的函數(shù)f:R → R使得f(x-f(y))=f(f(y))+xf(y)+f(x)-1對(duì)所有x,y ∈ R都成立。

其中R表示實(shí)數(shù)集。

 

試題詳情

1.  設(shè)a、b是常數(shù),解方程組

x + y + z = a;     x2 + y2 + z2 = b2;     xy=z2

并求出若使x、y、z是互不相同的正數(shù),a、b應(yīng)滿(mǎn)足什么條件?

2.  設(shè)a、b、c是某三角形的邊,A 是其面積,求證:

a2 + b2 + c2 >= 4√3 A.

并求出等號(hào)何時(shí)成立。 

3.  解方程 cosnx - sinnx = 1, 其中n是一個(gè)自然數(shù)。

4.  P是三角形ABC內(nèi)部一點(diǎn),PA交BC于D,PB交AC于E,PC交AB于F,求證AP/PD, BP/PE, CP/PF 中至少有一個(gè)不大于2,也至少有一個(gè)不小于2。

5.  作三角形ABC使得 AC=b, AB=c,銳角AMB = a,其中M是線(xiàn)斷BC的中點(diǎn)。求證這個(gè)三角形存在的充要條件是

b tan(a/2) <= c < b.

又問(wèn)上式何時(shí)等號(hào)成立。

6. 三個(gè)不共線(xiàn)的點(diǎn)A、B、C,平面p不平行于ABC,并且A、B、C在p的同一側(cè)。在p上任意取三個(gè)點(diǎn)A', B', C', A'', B'', C''設(shè)分別是邊AA', BB', CC'的中點(diǎn),O是三角形A''B''C''的重心。問(wèn),當(dāng)A',B',C'變化時(shí),O的軌跡是什么?

 

試題詳情

1. 凸四邊形ABCD,對(duì)交線(xiàn)AC,BD互相垂直,對(duì)邊AB,DC不平行,AB和DC的垂直平分線(xiàn)相交于
P點(diǎn),P在ABCD的內(nèi)部。

求證ABCD是圓內(nèi)接四邊形當(dāng)且僅當(dāng)三角形ABP、CDP的面積相等。

2. 在一次競(jìng)賽中有a個(gè)參賽者和b個(gè)裁判,b≥3是一個(gè)奇數(shù)。每個(gè)裁判可以給參賽者判“合格”或者
“不合格”,假設(shè)任何兩個(gè)裁判對(duì)至多k個(gè)參賽者的判決相同,
求證:k/a  ≥  (b-1)/2b.

3. 對(duì)任何正整數(shù)n,用d(n)表示n的正因數(shù)(包括1,n)的個(gè)數(shù)。
試求出所有正整數(shù)k使存在n滿(mǎn)足 d(n2)=kd(n).

4. 試找出所有的正整數(shù)對(duì)(a,b)使得ab2+b+7能整除a2b+a+b。

5. 設(shè)I是三角形 ABC的內(nèi)心,三角形 ABC的內(nèi)切圓在邊BC,CA,AB上的切點(diǎn)分別是K,L,M。
通過(guò)B點(diǎn)平行于MK的直線(xiàn)交LM,LK分別于R,S。

求證:三角形 RIS是銳交三角形。

6. 考慮所有從正整數(shù)到正整數(shù)的函數(shù)f使之對(duì)于所有的s、t滿(mǎn)足f(t2f(s))=sf(t)2
試求出f(1998)的最小的可能值。

 

試題詳情

1. 在坐標(biāo)平面上,具有整數(shù)坐標(biāo)的點(diǎn)構(gòu)成單位邊長(zhǎng)的正方格的頂點(diǎn)。這些正方格被涂上黑白相間的兩種顏色(像棋盤(pán)一樣)。對(duì)于任意一對(duì)正整數(shù)m和n,考慮一個(gè)直角三角形其頂點(diǎn)具有整數(shù)坐標(biāo),兩腰長(zhǎng)分別為mn,且其兩腰都在這些正方格的邊上。 設(shè)S1為這個(gè)三角形區(qū)域中所有黑色部分的總面積,S2則為所有白色部分的總面積。 令f(m,n)=|S1-S2|,

2. 設(shè)∠A△ABC中最小的?角。BC將此三角形的外接圓分成兩個(gè)弧。U為落在不含A點(diǎn)的弧上且異于B,C的一點(diǎn)。線(xiàn)段AB,AC的垂直平分線(xiàn)分別交AUV,W。
直線(xiàn)BV, CW相交于T,

求證:AU=TB+TC

3. x1,x2,...,xn是正實(shí)數(shù)滿(mǎn)足|x1+x2+...xn|=1 且對(duì)所有i有|xi|≤(n+1)/2。

試證明存在x1,x2,...,xn的一個(gè) 排列y1,y2,...,yn滿(mǎn)足

|y1+2y2+...+nyn|≤(n+1)/2。 

4. 一個(gè)n×n的矩陣稱(chēng)為一個(gè)n階“銀矩陣”,如果它的元素取自集合S={1,2,...,2n-1}且對(duì)于每一個(gè)i=1,2,...,n,它的第i列與第i行中的所有元素合起來(lái)恰好是S中的所有元素。求證:

 

5. 試找出所有的正整數(shù)對(duì)(a,b)滿(mǎn)足

a

b2

=

b

a

 

 

6. 對(duì)每個(gè)正整數(shù)n,將n表示成2的非負(fù)整數(shù)次方之和,令f(n)為正整數(shù)n的上述不同表示法的個(gè)數(shù)。如果倆個(gè)表示法的差別僅在于他們中各個(gè)數(shù)相加的次序不同,這兩個(gè)表示法就被視為是相同的。例如,f(4)=4,因?yàn)?恰有下列四種不同的表示法:4; 2+2; 2+1+1;1+1+1+1。

求證:對(duì)于任意整數(shù)n≥3,  

2

n2/4

< f(2n)<

2

n2/2

 

 

 

試題詳情

1. ABCD是一個(gè)長(zhǎng)寬分別是AB=20,BC=12的長(zhǎng)方形板。將此長(zhǎng)方形板分割為20×12個(gè)格子狀的單位小方格,r為一給定的正整數(shù),一個(gè)銅幣在此板上每移動(dòng)一次的規(guī)則為:銅幣可從一個(gè)小方格內(nèi)移動(dòng)到另一個(gè)小方格內(nèi)的充分必要條件是這兩個(gè)小方格的中點(diǎn)間的距離為√r,F(xiàn)目標(biāo)是把一個(gè)在含頂點(diǎn)A的小方格內(nèi)的銅幣經(jīng)過(guò)若干次移動(dòng)后到達(dá)含頂點(diǎn)B的小方格內(nèi)。

2. P△ABC內(nèi)一點(diǎn)且∠APB-∠ACB=∠APC-∠ABC,設(shè)D,E分別是∠APB,∠APC的內(nèi)心,

求證:AP,BD,CE三線(xiàn)共點(diǎn)。

3. S={0,1,2,3,...}為所有非負(fù)整數(shù)所成的集合,試找出所有由S對(duì)應(yīng)到S本身的函數(shù)f且對(duì)m,n∈Sf(m+f(n))=f(f(m))+f(n)。

4. 正整數(shù)a,b使得15a+16b16a-15b都是完全平方數(shù),試求出最小的可表示成這兩個(gè)完全平方數(shù)之一的可能值。

5. ABCDEF是凸六邊形,AB平行于ED,BC平行于FE,CD平行于AF。 令RA,RC,RE分別表示△FAB,△BCD,△DEF的外接圓的半徑,并以p表示該六邊形的周長(zhǎng)。

求證:RA+RC+RE≥p/2。

6. n,p,q都是正整數(shù)且n>p+q,令x0,x1,xn都是整數(shù),x0=xn=0且對(duì)每個(gè)1≤i≤n,xi-xi-1=pq。 

求證存在下標(biāo)i<j(i,j)≠(0,n)滿(mǎn)足xi=xj

 

試題詳情

1. A,B,C,D是一條直線(xiàn)上順序排列的四個(gè)不同點(diǎn),分別以AC,BD為直徑的兩個(gè)圓相交于X,Y,直線(xiàn)XYBCZ, 設(shè)P為直線(xiàn)XY上異于Z的一點(diǎn),直線(xiàn)CP與以AC為直徑的圓相交于C,M; 直線(xiàn)BP與以BD為直徑的圓相交于B,N。求證:AM,DN,XY三線(xiàn)共點(diǎn)。

2. a,b,c為正實(shí)數(shù)且abc=1,試證:

 

1

+

1

+

1

3

a3(b+c)

b3(c+a)

c3(a+b)

2

3. 試確定所有整數(shù)n>3,使得在平面上存在n個(gè)點(diǎn)A1,A2, ...,An(無(wú)三點(diǎn)共線(xiàn))及n個(gè)實(shí)數(shù)r1,r2,...,rn滿(mǎn)足 △AiAjAk的面積是ri+rj+rk, 其中是對(duì)每個(gè)三元組1≤i<j<k≤n。

4. 正實(shí)數(shù)序列x0,x1,...,x1995滿(mǎn)足條件 x0=x1995且對(duì)于i=1,2,...,1995有xi-1+2/xi-1=2xi +1/xi.
試求出所有滿(mǎn)足上述條件的數(shù)列中x0的最大值。

5. 設(shè)ABCDEF是凸六邊形,滿(mǎn)足AB=BC=CD, DE=EF=FA,∠BCD=∠EFA=60o。 設(shè)G,H是這六邊形內(nèi)部?jī)牲c(diǎn)使得∠AGB=∠DHE=120o,

求證 AG+GB+GH+DH+HE≥CF。

6. p是一個(gè)奇質(zhì)數(shù),試求出集合{1,2,...,2p}的所有p元子集A的個(gè)數(shù)滿(mǎn)足A中元素之和能被p整除。

 

試題詳情


同步練習(xí)冊(cè)答案