0  1148  1156  1162  1166  1172  1174  1178  1184  1186  1192  1198  1202  1204  1208  1214  1216  1222  1226  1228  1232  1234  1238  1240  1242  1243  1244  1246  1247  1248  1250  1252  1256  1258  1262  1264  1268  1274  1276  1282  1286  1288  1292  1298  1304  1306  1312  1316  1318  1324  1328  1334  1342  3002 

1.  已知x1 >= x2 >= ... >= xn, 以及y1 >= y2 >= ... >= yn 都是實(shí)數(shù),求證 若z1 ,z2 ,...,zn 是yi 的任意排列則有

∑(xi-yi)2   <=  ∑(xi-zi)2

上式中左右兩邊的求和都是i從1到n。

2.  令a1 < a2 < a3 < ... 是一遞增正整數(shù)序列,求證對所有i>=1,存在無窮多個(gè) an 可以寫成  an = rai + saj的形式,其中r,s是正實(shí)數(shù)且j > i。

3.  任意三角形ABC的邊上,向外作三角形ABR,BCP,CAQ,使角CBP、角CAQ都是45度,角BCP、角ACQ都是30度,角ABR、角BAR都是15度。求證角QRP是直角并且QR=RP。

4. 令A(yù)是將44444444寫成十進(jìn)制數(shù)字時(shí)的各位數(shù)字之和,令B時(shí)A的各位數(shù)字之和,求B的各位數(shù)字之和。

5.  判定并證明能否在單位圓上找到1975個(gè)點(diǎn)使得任意兩點(diǎn)間的距離為有理數(shù)。

6.  找出所有兩個(gè)變量的多項(xiàng)式P(x, y)使其滿足:

P(y + z, x) + P(z + x, y) + P(x + y, z) = 0;

 

試題詳情

1.  三個(gè)玩家玩游戲。在三張撲克牌上分別寫上一個(gè)正整數(shù),并且每張牌上的數(shù)都不相同。在每一輪游戲中都是隨機(jī)的把卡片分給這些玩家,然后每個(gè)玩家拿到所分得卡片上數(shù)目的籌碼。當(dāng)游戲進(jìn)行時(shí),玩家手上的籌碼自然是越來越多。假設(shè)游戲至少進(jìn)行了兩輪以上。在最后一輪結(jié)束時(shí),第一個(gè)玩家有籌碼20個(gè),第二個(gè)玩家有10個(gè),第三個(gè)玩家有9個(gè)。又已知在最后一輪游戲中第三個(gè)玩家拿到的是最大數(shù)目的籌碼。試問,在第一輪游戲中哪個(gè)玩家收到了中間數(shù)量的籌碼?

2.  三角形ABC,求證在邊AB上存在一點(diǎn)D使得CD是AD、DB的幾何平均值的充要條件是

sin A sin B <= sin2(C/2).

3.  試證明對任意非負(fù)整數(shù)n,下式都不能被5整除:

∑  C(2n+1,2k+1)23k,

上式中的求和是k從0到n,符號 C(r,s) 表示二項(xiàng)式系數(shù) r!/(s!(r-s)!)。

4.  沿著一個(gè) 8 x 8 象棋盤(黑白相間)中的線將其分割成p個(gè)不相交的長方形,使得每個(gè)長方形內(nèi)的黑白小方格的數(shù)目一樣,并且每個(gè)長方形中小方格的數(shù)量也都不一樣多。求出所有可能p值中的最大值;并對這樣的最大值求出所有可能的分法(即求出那些長方形的大。。

5.  a,b,c,d是任意實(shí)數(shù),判定下式的所有可能值:

a/(a+b+d) + b/(a+b+c) + c/(b+c+d) + d/(a+c+d)。

6.  設(shè) P(x) 是一個(gè)指數(shù)d>0的整系數(shù)多項(xiàng)式,n是P(X)=1或-1的不同整根的個(gè)數(shù),則有 

n <= d + 2.

 

試題詳情

1.  OP1, OP2, ... , OP2n+1 是平面上的單位向量,其中點(diǎn) P1, P2, ... , P2n+1 都是位于通過點(diǎn)O的一條直線的同一側(cè),求證

|OP1 + ... + OP2n+1| >= 1.

2.  問能否在空間中找到一個(gè)不共面的有限點(diǎn)集M使得,對M中的任何兩點(diǎn)A、B,都可以再在M中尋找到兩點(diǎn)C、D,而直線AB、CD是不相同的并且是互相平行的。

3.  考慮所有這樣的實(shí)數(shù)a、b使得方程

x4 + ax3 + bx2 + ax + 1 = 0

至少有一個(gè)實(shí)根。試找出 a2 + b2 的最小值。

4.  一個(gè)士兵需要在一個(gè)等邊三角形的區(qū)域內(nèi)探測有沒有地雷,他的掃雷器的半徑是三角形高的一半,士兵從三角形的一個(gè)定點(diǎn)出發(fā),試問如果要完成任務(wù)且使行程最短他應(yīng)該走什么樣的路徑?

5.  G是具有下述形式且非常值的函數(shù)的集合:

f(x) = ax + b,其中a,b,x都是實(shí)數(shù)。

并且已知G具有這些性質(zhì):

?         如果f,g都屬于G,則 fg(x) = f(g(x)) 也屬于G;

?         如果f屬于G,則 f-1(x) = x/a - b/a 也屬于G;

?         對任何f屬于G,存在一個(gè)實(shí)數(shù) xf 使得 f(xf) = xf成立。

求證:存在實(shí)數(shù) M 使得 f(M)=M對所有G中的函數(shù)f都成立。

6.  a1, a2, ... , an 是正實(shí)數(shù),實(shí)數(shù) q 滿足0 < q < 1,試求出n格實(shí)數(shù) b1, b2, ... , bn 使得:

 

試題詳情

1.有十個(gè)互不相同的二位數(shù),求證必可從中選出兩個(gè)不相交的子集,使得這兩個(gè)子集中的元素之和相等。

2. 設(shè) n>4, 求證每一個(gè)圓內(nèi)接四邊形都可以分割成 n 個(gè)圓內(nèi)接四邊形。

3.  m,n是任意非負(fù)整數(shù),求證下式是一整數(shù)。

(2m)!(2n)! 

m!n!(m+n)!

4.  試找出下述方程組的所有正實(shí)數(shù)解:

        (x12 - x3x5)(x22 - x3x5) <= 0
        (x22 - x4x1)(x32 - x4x1) <= 0
        (x32 - x5x2)(x42 - x5x2) <= 0
        (x42 - x1x3)(x52 - x1x3) <= 0
        (x52 - x2x4)(x12 - x2x4) <= 0

5.  f、g都是定義在實(shí)數(shù)上并取值實(shí)數(shù)的函數(shù),并且滿足方程

f(x + y) + f(x - y) = 2f(x)g(y),

又已知 f 不恒等于0且 |f(x)| <= 1 。求證對所有x同樣有 |g(x)| <= 1 。

6.  給定四個(gè)不相同的平行平面,求證存在一個(gè)正四面體,它的四個(gè)定點(diǎn)分別在這四個(gè)平面上。

 

試題詳情

1. 令 En = (a1 - a2)(a1 - a3) ... (a1 - an) + (a2 - a1)(a2 - a3) ... (a2 - an) + ... + (an - a1)(an - a2) ... (an - an-1). 求證  En >= 0 對于n=3或5成立,而對于其他自然數(shù)n>2不成立。

2.  凸多邊形 P1 的頂點(diǎn)是 A1, A2, ... , A9,若將頂點(diǎn) A1 平移至Ai 時(shí)則 P1 平移成了多邊形 Pi ,求證 P1, P2, ... , P9 之中至少有兩個(gè)具有一共同內(nèi)點(diǎn)。

3.  求證能夠找到一個(gè)由形式 2n - 3 (n是正整數(shù))的整數(shù)構(gòu)成的集合并滿足任何兩個(gè)元素互質(zhì)。

4. 四面體ABCD的所有面都是銳角三角形,在線段AB上取一內(nèi)點(diǎn)X,現(xiàn)在BC上取內(nèi)點(diǎn)Y,CD上取內(nèi)點(diǎn)Z,AD上內(nèi)點(diǎn)T。求證:

5.  對任何自然數(shù) m ,求證存在平面上一有限點(diǎn)集 S,滿足:對S中的每一個(gè)點(diǎn) A,存在S中的恰好 m 個(gè)點(diǎn)與 A的距離為單位長。

6.  設(shè) A = (aij),其中 i, j = 1, 2, ... , n,是一個(gè)方陣,元素 aij 都是非負(fù)整數(shù)。若 i、j使得aij = 0,則第i行和第j列的元素之和 大于或等于 n。求證:該方陣中所有元素之和 大于或等于n2/2。

 

試題詳情

1.  M 是三角形ABC的邊AB上的任何一點(diǎn),r、r1、r2 分別是三角形ABC、AMC、BMC的內(nèi)切圓的半徑,q 是AB外旁切圓的半徑(即與AB邊相切,與CA、CB的延長線上相切的圓),類似的, q1、q2分別是AC、BC外旁切圓的圓心。求證: r1r2q = rq1q2

2.  已知0 ≤ xi < b,i = 0, 1, ... ,n 并且 xn > 0, xn-1 > 0。如果 a>b,xnxn-1...x0 是數(shù)A在a進(jìn)制下的表示、也是B在b進(jìn)制下的表示,則 xn-1xn-2...x0 表示了 A'在a進(jìn)制下的表示、B'在b進(jìn)制下的表示。求證:A'B<AB'。

3.  實(shí)數(shù) a0, a1, a2, ...滿足 1 = a0 <= a1 <= a2 <= ...,并定義

 bn =∑(1 - ak-1/ak)/√ak

其中求和是k從1到n。

4.  試找出所有的正整數(shù) n 使得集合 {n, n+1, n+2, n+3, n+4, n+5} 可被分拆成兩個(gè)子集合,每個(gè)子集合的元素的乘積相等。

5.  四面體ABCD,角BDC是直角,D向平面ABC作垂線的垂足恰好是三角形ABC的垂心。求證:

(AB + BC + CA)2 ≤ 6(AD2 + BD2 + CD2).

并問何時(shí)等號成立?

6.  平面上給定100個(gè)點(diǎn),無三點(diǎn)共線,求證:這些點(diǎn)構(gòu)成的三角形中至多70% 是銳角三角形。

 

試題詳情

1.  對任意正整數(shù) n,求證有無窮多個(gè)正整數(shù) m 使得 n4 + m 不是質(zhì)數(shù)。

2.  令 f(x) = cos(a1 + x) + 1/2 cos(a2 + x) + 1/4 cos(a3 + x) + ... + 1/2n-1 cos(an + x), 其中 ai 是實(shí)數(shù)常量,x是實(shí)數(shù)變量,F(xiàn)已知 f(x1) = f(x2) = 0,求證 x1 - x2 是 π 的整數(shù)倍。

3.  對每一個(gè)k = 1, 2, 3, 4, 5,試找出 a>0 應(yīng)滿足的充要條件使得存在一個(gè)四面體,其中 k個(gè)邊長均為 a,其余 6-k個(gè)邊的長度均為 1。

4. 以AB為直徑的半圓弧,C是其上不同于A、B的一點(diǎn),D是C向AB作垂線的垂足。K1 是三角形ABC的內(nèi)切圓, 圓K2 與CD、DA以及半圓都相切,圓K3 與CD、DB及半圓相切。求證:圓K1、 K2 、 K3 除AB外還有一條公切線。

5. 平面上已給定了 n>4個(gè)點(diǎn),無三點(diǎn)共線。求證至少有 (n-3)(n-4)/2 個(gè)凸四邊形,其頂點(diǎn)都是已給點(diǎn)集中的點(diǎn)。

6.  給定實(shí)數(shù)x1, x2, y1, y2, z1, z2, 滿足 x1 > 0, x2 > 0, x1y1 > z12, x2y2 > z22,求證:

8

1

+

1

(x1 + x2)(y1 + y2) - (z1 + z2)2

x1y1 - z12

x2y2 - z22

并給出等號成立的充分必要條件。

 

試題詳情

1.  求證有且僅有一個(gè)三角形,它的邊長為連續(xù)整數(shù),有一個(gè)角是另外一個(gè)角的兩倍。

2.  試找出所有的正整數(shù) n,其各位數(shù)的乘積等于 n2 - 10n - 22。

3.  a, b, c 是不全為0的實(shí)數(shù)。x1, x2, ... , xn 是滿足下述方程組的未知數(shù):

     axi2 + bxi + c = xi+1, 對于 i=1,2,...,n-1;

     axn2 + bxn + c = x1;

若設(shè) M= (b - 1)2 - 4ac ,求證:

4.  求證任何四面體上都有一個(gè)頂點(diǎn)使得經(jīng)過該頂點(diǎn)的三條邊可構(gòu)成一個(gè)三角形的三邊。

5.  令f是定義在所有實(shí)數(shù)并取值實(shí)數(shù)的函數(shù),并且對于某個(gè) a>0及任何 x>0 有

f(x + a) = 1/2 +√[f(x)-f(x)2]

求證 f 是周期函數(shù),并且當(dāng) a=1時(shí)請給出一個(gè)非常值函數(shù)的例子。

6.  對任何自然數(shù) n,試計(jì)算下式的值

[(n+1)/2] + [(n+2)/4] + [(n+4)/8] + ... + [(n+2k)/2k+1] + ...

其中[x]表示不超過 x 的最大整數(shù)。

 

試題詳情

2005 International Mathematical Olympiad

 

第一天(4.5小時(shí))

1. 等邊三角形ABC各邊上的六個(gè)點(diǎn)A1,A2(∈BC),B1,B2(∈CA),C1,C2(∈AB)構(gòu)成六邊長相等的凸六邊形A1A2B1B2C1C2.
求證:三條直線A1B2,B1C2,C1A2交于一點(diǎn).

2. 整數(shù)數(shù)列a1,a2,……中有無窮多個(gè)正項(xiàng)及無窮多個(gè)負(fù)項(xiàng).已知,對每個(gè)正整數(shù)n,數(shù)a1,a2,…,an除以n所得到的余數(shù)互不相同.
證明:每個(gè)整數(shù)在數(shù)列a1,a2,……中都出現(xiàn)且只出現(xiàn)一次.

3. x,y,z為正數(shù)且xyz≥1.求證:
(x5-x2)/(x5+y2+z2)+(y5-y2)/(y5+z2+x2)+(z5-z2)/(z5+x2+y2)≥0.

第二天(4.5小時(shí))
4.試求與無窮數(shù)列an=2n+3n+6n-1(n≥1)的一切項(xiàng)均互素的所有正整數(shù).

5.取定凸四邊形ABCD,其中BC=DA,BC與DA不平行.動(dòng)點(diǎn)E,F分別在線段BC,DA上且滿足BE=DF.直線AC與BD交于P, BD與EF交于Q, EF與AC交于R.求證:當(dāng)E,F變動(dòng)時(shí),所有三角形PQR的外接圓周除了P外還有一個(gè)公共點(diǎn).

6.一次數(shù)學(xué)競賽共給出6道題.已知,每兩題均被多于2/5的選手同時(shí)解出,但無一人解出所有6道題.證明:至少有兩人各解出5道題.

試題詳情

2004IMO(中文版)

 

1. △ABC 為銳角三角形,AB ≠ AC;以BC為直徑的圓分別交AB和AC于M 和N . 記BC中點(diǎn)為

O. ∠BAC和∠MON的角平分線交于R. 求證△BMR的外接圓和△CNR的外接圓有一個(gè)公共點(diǎn)在

BC邊上.

 

2. 求所有的實(shí)系數(shù)多項(xiàng)式f,使得對所有滿足 ab + bc + ca = 0的實(shí)數(shù)a, b, c 有

f(a?b) + f(b?c) + f(c?a) = 2f(a + b + c).

 

3. 定義一個(gè)由6個(gè)單位正方形構(gòu)成的“鉤”(圖傳不上:3 X 3 的去掉中心塊和一邊上連

續(xù)的兩塊,包括由此圖經(jīng)旋轉(zhuǎn)、反射得到的圖形). 定出所有的能被鉤覆蓋的m×n的矩形

.

 

4. 設(shè)n >= 3. t_1, t_2, ..., t_n > 0 滿足

 

n^2 + 1 > (t_1 + t_2 + ... + t_n)(1/t_1 + 1/t_2 + ... + 1/t_n)

 

證明t_1, t_2, ..., t_n中隨便取3個(gè)數(shù)都能構(gòu)成一個(gè)三角

 

5. 凸四邊形ABCD的對角線BD 不平分∠ABC和∠CDA. ABCD內(nèi)一點(diǎn)P滿足∠PBC = ∠DBA和∠

PDC = ∠BDA. 求證:ABCD是圓的內(nèi)接四邊形當(dāng)且僅當(dāng)AP = CP.

 

6. 稱一個(gè)正整數(shù)為“交替的”,如果它的十進(jìn)表示的任兩個(gè)連續(xù)數(shù)位的奇偶性不同. 求所

有的正整數(shù)n,n的某個(gè)倍數(shù)是交替的.

試題詳情


同步練習(xí)冊答案