22.解: (Ⅰ)由 Sn=an-×2n+1+, n=1,2,3,… , ① 得 a1=S1= a1-×4+ 所以a1=2.
再由①有 Sn-1=an-1-×2n+, n=2,3,4,…
將①和②相減得: an=Sn-Sn-1= (an-an-1)-×(2n+1-2n),n=2,3, …
整理得: an+2n=4(an-1+2n-1),n=2,3, … , 因而數(shù)列{ an+2n}是首項(xiàng)為a1+2=4,公比為4的等比數(shù)列,即 : an+2n=4×4n-1= 4n, n=1,2,3, …, 因而an=4n-2n, n=1,2,3, …,
(Ⅱ)將an=4n-2n代入①得 Sn= ×(4n-2n)-×2n+1 + = ×(2n+1-1)(2n+1-2)
= ×(2n+1-1)(2n-1)
Tn= = × = ×( - )
所以, = - ) = ×( - ) <
f(x)= e-ax≥ >1. 綜上當(dāng)且僅當(dāng)a∈(-∞,2]時(shí),對(duì)任意x∈(0,1)恒有f(x)>1.
(Ⅱ)(?)當(dāng)0<a≤2時(shí), 由(Ⅰ)知: 對(duì)任意x∈(0,1)恒有f(x)>f(0)=1.
(?)當(dāng)a>2時(shí), 取x0= ∈(0,1),則由(Ⅰ)知 f(x0)<f(0)=1
(?)當(dāng)a≤0時(shí), 對(duì)任意x∈(0,1),恒有 >1且e-ax≥1,得
21.解(Ⅰ)f(x)的定義域?yàn)?-∞,1)∪(1,+∞).對(duì)f(x)求導(dǎo)數(shù)得 f '(x)= e-ax.
(?)當(dāng)a=2時(shí), f '(x)= e-2x, f '(x)在(-∞,0), (0,1)和(1,+ ∞)均大于0, 所以f(x)在(-∞,1), (1,+∞).為增函數(shù).
(?)當(dāng)0<a<2時(shí), f '(x)>0, f(x)在(-∞,1), (1,+∞)為增函數(shù).
(?)當(dāng)a>2時(shí), 0<<1, 令f '(x)=0 ,解得x1= - , x2= .
當(dāng)x變化時(shí), f '(x)和f(x)的變化情況如下表:
x
(-∞, -)
(-,)
(,1)
(1,+∞)
f '(x)
+
-
+
+
f(x)
ㄊ
ㄋ
ㄊ
ㄊ
f(x)在(-∞, -), (,1), (1,+∞)為增函數(shù), f(x)在(-,)為減函數(shù).
故||的最小值為3.
∴| |2= x2-1++5≥4+5=9.且當(dāng)x2-1= ,即x=>1時(shí),上式取等號(hào).
20.解: 橢圓方程可寫為: + =1 式中a>b>0 , 且 得a2=4,b2=1,所以曲線C的方程為: x2+ =1 (x>0,y>0). y=2(0<x<1) y '=-
設(shè)P(x0,y0),因P在C上,有0<x0<1, y0=2, y '|x=x0= - ,得切線AB的方程為:
y=- (x-x0)+y0 . 設(shè)A(x,0)和B(0,y),由切線方程得 x= , y= .
由= +得M的坐標(biāo)為(x,y), 由x0,y0滿足C的方程,得點(diǎn)M的軌跡方程為:
+ =1 (x>1,y>2)
(Ⅱ)| |2= x2+y2, y2= =4+ ,
(Ⅱ)∵ =(1,1,m), =(-1,1,m), ∴||=||, 又已知∠ACB=60°,∴△ABC為正三角形,AC=BC=AB=2. 在Rt△CNB中,NB=, 可得NC=,故C(0,1, ).
連結(jié)MC,作NH⊥MC于H,設(shè)H(0,λ, λ) (λ>0). ∴=(0,1-λ,-λ),
=(0,1, ). ? = 1-λ-2λ=0, ∴λ= ,
∴H(0, , ), 可得=(0,, - ), 連結(jié)BH,則=(-1,, ),
∵?=0+ - =0, ∴⊥, 又MC∩BH=H,∴HN⊥平面ABC,
∠NBH為NB與平面ABC所成的角.又=(-1,1,0),
∴cos∠NBH= = =
19.解法一: (Ⅰ)由已知l2⊥MN, l2⊥l1 , MN∩l1 =M, 可得l2⊥平面ABN.由已知MN⊥l1 , AM=MB=MN,可知AN=NB且AN⊥NB. 又AN為AC在平面ABN內(nèi)的射影.
(Ⅱ)∵Rt△CAN≌Rt△CNB, ∴AC=BC,又已知∠ACB=60°,因此△ABC為正三角形.
∵Rt△ANB≌Rt△CNB, ∴NC=NA=NB,因此N在平面ABC內(nèi)的射影H是正三角形ABC的中心,連結(jié)BH,∠NBH為NB與平面ABC所成的角.
解法二: 如圖,建立空間直角坐標(biāo)系M-xyz.令MN=1, 則有A(-1,0,0),B(1,0,0),N(0,1,0),
(Ⅰ)∵M(jìn)N是 l1、l2的公垂線, l1⊥l2, ∴l(xiāng)2⊥平面ABN. l2平行于z軸. 故可設(shè)C(0,1,m).于是 =(1,1,m), =(1,-1,0). ∴?=1+(-1)+0=0 ∴AC⊥NB.
18.解: (1)設(shè)Ai表示事件“一個(gè)試驗(yàn)組中,服用A有效的小鼠有i只" , i=0,1,2,
Bi表示事件“一個(gè)試驗(yàn)組中,服用B有效的小鼠有i只" , i=0,1,2,
依題意有: P(A1)=2×× = , P(A2)= × = . P(B0)= × = ,
P(B1)=2× × = , 所求概率為: P=P(B0?A1)+P(B0?A2)+P(B1?A2)
= × + × + × =
(Ⅱ)ξ的可能值為0,1,2,3且ξ~B(3,) . P(ξ=0)=()3= , P(ξ=1)=C31××()2=
, P(ξ=2)=C32×()2× = , P(ξ=3)=( )3=
ξ
0
1
2
3
P
ξ的分布列為:
數(shù)學(xué)期望: Eξ=3× = .
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com