12.(16分)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,
已知a1=1,2Sn=(n+1)an(n∈N*).
(1)求a2,a3,a4的值;
(2)寫出從an-1到an的遞推公式;
(3)求數(shù)列{an}的通項(xiàng)公式.
[解析] (1)由2(1+a2)=3a2,得a2=2.
由2(1+2+a3)=4a3,得a3=3.
由2(1+2+3+a4)=5a4,得a4=4.
(2)∵2Sn=(n+1)an(n∈N*),
∴2Sn-1=nan-1(n>1),
兩式相減,得2an=(n+1)an-nan-1,
∴遞推公式為an=an-1(n>1).
(3)由(2)得an=an-1
=·an-2
=··an-3
……
=···…··a1=na1.
又∵a1=1,
∴數(shù)列{an}的通項(xiàng)公式為an=n(n∈N*).
11.(15分)已知數(shù)列{an}的前n項(xiàng)和Sn,求數(shù)列{an}的通項(xiàng)公式.
(1)Sn=(-1)n+1n;
(2)Sn=2n2+n+3.
[解析] (1)由Sn=(-1)n+1n.
當(dāng)n=1時(shí),
a1=S1=1;
當(dāng)n≥2時(shí),
an=Sn-Sn-1
=(-1)n+1n-(-1)n(n-1)
=(-1)n(-2n+1)
=(-1)n+1(2n-1).
又∵n=1時(shí),a1=(-1)1+1(2×1-1)=1,
即a1也滿足an=(-1)n+1(2n-1),
∴an=(-1)n+1(2n-1).
(2)由Sn=2n2+n+3,
當(dāng)n=1時(shí),a1=S1=6;
當(dāng)n≥2時(shí),
an=Sn -Sn-1
=(2n2+n+3)-[2(n-1)2+(n-1)+3]
=4n-1.
∴an=
10.(15分)已知數(shù)列{an}分別滿足下列條件,寫出它的前五項(xiàng),并歸納出各數(shù)列的一個(gè)通項(xiàng)公式.
(1)a1=0,an+1=an+(2n-1);
(2)a1=1,an+1=.
[解析] (1)因?yàn)?i>a1=0,an+1=an+(2n-1),
所以a2=a1+(2×1-1)=1,
a3=a2+(2×2-1)=4,
a4=a3+(2×3-1)=9,
a5=a4+(2×4-1)=16.
所以它的前五項(xiàng)為0,1,4,9,16,此數(shù)列又可寫成(1-1)2,(2-1)2,(3-1)2,(4-1)2,(5-1)2,….
該數(shù)列的一個(gè)通項(xiàng)公式為an=(n-1)2.
(2)因?yàn)?i style='mso-bidi-font-style:normal'>a1=1,an+1=,
所以a2=,a3=,a4=,a5=.
它的前五項(xiàng)依次為1,,,,,因此該數(shù)列可寫成,,,,….
故它的一個(gè)通項(xiàng)公式為an=.
9.?dāng)?shù)列,,,,…中,有序數(shù)對(duì)(a,b)可以是____.
[解析] 從上面的規(guī)律可以看出,
解上式得.
[答案]
8.(2008年四川卷)設(shè)數(shù)列{an}中,a1=2,an+1=an+n+1,則通項(xiàng)an=________.
[解析] 由an+1=an+n+1,∴an+1-an=n+1,
∴a2-a1=2,
a3-a2=3,a4-a3=4,…,an-an-1=n,
∴累加得an-a1=2+3+…+n,
an=a1+-1,∴an=+1.
[答案] +1
7.若數(shù)列3,5,9,17,33…,則通項(xiàng)公式an=________.
[解析] ∵a1=3=21+1,a2=5=22+1,
a3=9=23+1,…,
∴an=2n+1.
[答案] 2n+1
6.已知數(shù)列{an}的通項(xiàng)公式是an=n2+kn+2,若對(duì)于n∈N*,都有an+1>an成立,則實(shí)數(shù)k的取值范圍是
( )
A.k>0 B.k>-1
C.k>-2 D.k>-3
[解析] an+1>an,即(n+1)2+k(n+1)+2>n2+kn+2,
則k>-(2n+1)對(duì)于n∈N*都成立,而-(2n+1)當(dāng)n=1時(shí)取得最大值-3,所以k>-3.
[答案] D
5.若數(shù)列{an}滿足a1=1,a2=2,an=(n≥3且n∈N?),則a47=
( )
A.1 B.2
C. D.2-987
[解析] 由已知遞推公式可得a1=1,a2=2,a3=2,a4=1,a5=,a6=,a7=1,a8=2,…,故{an}是以6為周期的數(shù)列,故a47=a6×7+5=a5=.
[答案] C
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com