分析 先根據(jù)直線與圓相交,圓心到直線的距離小于等于半徑,以及圓半徑為正數(shù),求出k的范圍,再根據(jù)(x0,y0)是直線x+y=2k-1與圓x2+y2=k2+2k-3的交點(diǎn),滿足直線與圓方程,代入直線與圓方程,化簡,求出用k表示的x0y0的式子,根據(jù)k的范圍求x0y0的取值范圍.
解答 解:∵直線x+y=2k-1與圓x2+y2=k2+2k-3
∴圓心(0.0)到直線的距離d=$\frac{|1-2k|}{\sqrt{2}}≤\sqrt{{k}^{2}+2k-3}$
解得$2-\frac{{\sqrt{2}}}{2}≤k≤2+\frac{{\sqrt{2}}}{2}$,
又∵圓x2+y2=k2+2k-3,∴k2+2k-3>0
解得,k<-3,或k>1
∴k的取值范圍為$2-\frac{{\sqrt{2}}}{2}≤k≤2+\frac{{\sqrt{2}}}{2}$,
由$\left\{\begin{array}{l}{x_0}+{y_0}=2k-1\\{x_0}^2+{y_0}^2={k^2}+2k-3\end{array}\right.$得${x_0}{y_0}=\frac{3}{2}{(k-1)^2}+\frac{1}{2}$,
∴$\frac{{11-6\sqrt{2}}}{4}≤{x_0}{y_0}≤\frac{{11+6\sqrt{2}}}{4}$,
∴x0y0的取值范圍是$[\frac{{11-6\sqrt{2}}}{4},\frac{{11+6\sqrt{2}}}{4}]$.
故答案為:$[\frac{{11-6\sqrt{2}}}{4},\frac{{11+6\sqrt{2}}}{4}]$.
點(diǎn)評(píng) 本題主要考察了直線與圓相交位置關(guān)系的判斷,做題時(shí)考慮要全面,不要丟情況.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①③ | B. | ②③ | C. | ①⑤ | D. | ②③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 5 | C. | $\frac{3}{5}$ | D. | $\frac{5}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-2,0] | B. | [-1,2] | C. | $[{0,\sqrt{2}}]$ | D. | $[{-1,\sqrt{3}}]$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com