2.若實(shí)數(shù)x,y滿足$\left\{{\begin{array}{l}{x-y-3≤0}\\{3x-y-9≥0}\\{y≤3}\end{array}}\right.$,則$\frac{y+1}{x+1}$的取值范圍是[$\frac{1}{4}$,$\frac{4}{5}$].

分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用斜率的幾何意義進(jìn)行求解即可.

解答 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖,
$\frac{y+1}{x+1}$的幾何意義是區(qū)域內(nèi)的點(diǎn)到點(diǎn)D(-1,-1)的斜率,
由圖象知BD的斜率最大,AD的斜率最小,
由$\left\{\begin{array}{l}{y=3}\\{3x-y-9=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=4}\\{y=3}\end{array}\right.$,得B(4,3),
由$\left\{\begin{array}{l}{3x-y-9=0}\\{x-y-3=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=3}\\{y=0}\end{array}\right.$,得A(3,0),
則BD的斜率k=$\frac{3+1}{4+1}$=$\frac{4}{5}$,
AD的斜率k=$\frac{0+1}{3+1}$=$\frac{1}{4}$,
則$\frac{1}{4}$≤$\frac{y+1}{x+1}$≤$\frac{4}{5}$,
即$\frac{y+1}{x+1}$的范圍是[$\frac{1}{4}$,$\frac{4}{5}$],
故答案為:[$\frac{1}{4}$,$\frac{4}{5}$]

點(diǎn)評(píng) 本題主要考查線性規(guī)劃以及直線斜率的幾何意義,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.函數(shù)y=x2+cosx是( 。
A.奇函數(shù)B.是偶函數(shù)C.既奇又偶函數(shù)D.非奇非偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.平面向量$\overrightarrow{a}$與$\overrightarrow$的夾角等于$\frac{π}{3}$,|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,則$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$的夾角的余弦值等于( 。
A.$\frac{\sqrt{21}}{7}$B.$\frac{1}{7}$C.-$\frac{1}{7}$D.-$\frac{\sqrt{21}}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知f(x)是定義在R上的奇函數(shù),且滿足f(x+2)=-$\frac{1}{f(x)}$,當(dāng)1≤x≤2時(shí),f(x)=x,則f(-$\frac{11}{2}$)=-$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,四棱錐P-ABCD中,底面ABCD是平行四邊形,且PA⊥平面ABCD,PA=AB=AD=2,PC與底面ABCD所成角為30°.
(I)證明:平面PBD⊥平面PAC;
(II)求平面APB與平面PCD所成二面角(銳角)的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.自極點(diǎn)O任意作一條射線與直線ρcosθ=3相交于點(diǎn)M,在射線OM上取點(diǎn)P,使得OM•OP=12,求動(dòng)點(diǎn)P的極坐標(biāo)方程,并把它化為直角坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知集合A滿足條件:當(dāng)p∈A時(shí),總有$\frac{-1}{p+1}$∈A(p≠0且p≠-1),已知2∈A,則集合A的子集的個(gè)數(shù)至少為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知復(fù)數(shù)z=1-$\sqrt{3}$i(其中i是虛數(shù)單位)($\overline{z}$)2+az=0,則實(shí)數(shù)a=2;|z+a|=2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.如圖是某高三學(xué)生七次模擬考試的物理成績(jī)的莖葉圖,則該學(xué)生物理成績(jī)的平均數(shù)和中位數(shù)分別為(  )
A.87和85B.86和85C.87和84D.86和84

查看答案和解析>>

同步練習(xí)冊(cè)答案