8.如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形,∠DAB=60°,AB=2,PD=AD=1,PD⊥底面ABCD.
(1)證明:PA⊥BD;
(2)求三棱錐D-PBC的體積.

分析 (1)在△ABD中,由已知結(jié)合余弦定理可得BD⊥AD,再由線面垂直的性質(zhì)可得BD⊥PD,由線面垂直的判定得到BD⊥平面PAD.從而可得PA⊥BD;
(2)利用等體積轉(zhuǎn)化,代入體積公式求得棱錐D-PBC的體積.

解答 (1)證明:∵∠DAB=60°,AB=2AD,由余弦定理得BD=$\sqrt{3}$AD,
從而B(niǎo)D2+AD2=AB2,故BD⊥AD.
又PD⊥底面ABCD,可得BD⊥PD.
又AD∩PD=D,
∴BD⊥平面PAD.
故PA⊥BD.
(2)解:由(1)知:AD⊥BD,∴BC⊥BD,且BC=1.
在Rt△BCD中,S△BCD=$\frac{1}{2}BC•BD$=$\frac{\sqrt{3}}{2}$.
∵PD⊥底面ABCD,∴PD為三棱錐P-BCD的高,且PD=1
∴VD-PBC=VP-BCD=$\frac{1}{3}{S}_{△BCD}•PD$=$\frac{\sqrt{3}}{6}$,
∴三棱錐D-PBC的體積為$\frac{\sqrt{3}}{6}$.

點(diǎn)評(píng) 本題考查直線與平面垂直的判定,考查線面垂直的性質(zhì),考查了棱錐體積的求法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.寫(xiě)出下列各數(shù)列的一個(gè)通項(xiàng)公式:
(1)1,0,1,0
(2)0,1,0,1,…

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,四邊形ABCD是邊長(zhǎng)為2的正方形,若點(diǎn)P在正方形內(nèi)(不含邊界),且滿足$\overrightarrow{PA}$$•\overrightarrow{PB}$=1
(Ⅰ)求動(dòng)點(diǎn)P的軌跡方程;
(Ⅱ)求|$\overrightarrow{PA}$+2$\overrightarrow{PB}$|的取值范圍;
(Ⅲ)求|$\overrightarrow{PC}$-2$\overrightarrow{PD}$|2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.函數(shù)f(x)=$\frac{lg(x+2)}{x-1}$的定義域是(-2,1)∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.若復(fù)數(shù)z滿足(z-1)i=1+i,則復(fù)數(shù)z的虛部為(  )
A.-iB.1C.-1D.i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知命題P:?x∈R,x-2>lgx,命題q:?x∈R,x2≥0,則( 。
A.p∨q是假命題B.p∧q是真命題C.p∧(¬q)是真命題D.p∨(¬q)是假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.函數(shù)f(x)=sin2x-x(0<x<$\frac{π}{2}$)的單調(diào)增區(qū)間是(0,$\frac{π}{6}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.在頻率分布直方圖中,共有11個(gè)小長(zhǎng)方形,若中間一個(gè)小長(zhǎng)方形的面積等于其他10個(gè)小長(zhǎng)方形的面積和,且樣本容量為160,則中間一組的頻數(shù)為80.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)Sn是數(shù)列{an}(n∈N+)的前n項(xiàng)和,n≥2時(shí)點(diǎn)(an-1,2an)在直線y=2x+1上,且{an}的首項(xiàng)a1是二次函數(shù)y=x2-2x+3的最小值,則S9的值為(  )
A.6B.7C.36D.32

查看答案和解析>>

同步練習(xí)冊(cè)答案