12.海曲市某中學(xué)的一個(gè)社會實(shí)踐調(diào)查小組,在對中學(xué)生的良好“光盤習(xí)慣”的調(diào)查中,隨機(jī)發(fā)放了120份問卷,對回收的100份有效問卷進(jìn)行統(tǒng)計(jì),得到如下2×2列聯(lián)表:
做不到光盤能做到光盤合計(jì)
451055
301545
合計(jì)7525100
(Ⅰ)現(xiàn)已按是否能做到光盤分層從45份女生問卷中抽取了9份問卷,若從這9份問卷中隨機(jī)抽取4份,并記錄其中能做到光盤的問卷的份數(shù)為ξ,試求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望;
(Ⅱ)如果認(rèn)為良好“光盤行動”與性別有關(guān)犯錯誤的概率不超過P,那么根據(jù)臨界值表最精確的P的值應(yīng)為多少?請說明理由.
附:獨(dú)立性檢驗(yàn)統(tǒng)計(jì)量Χ$\begin{array}{l}2\\{\;}\end{array}=\frac{{n(n\begin{array}{l}{\;}\\{11}\end{array}n\begin{array}{l}{\;}\\{22}\end{array}-n\begin{array}{l}{\;}\\{12}\end{array}n\begin{array}{l}{\;}\\{21}\end{array})\begin{array}{l}2\\{\;}\end{array}}}{{n\begin{array}{l}{\;}\\{1+}\end{array}n\begin{array}{l}{\;}\\{2+}\end{array}n\begin{array}{l}{\;}\\{+1}\end{array}n\begin{array}{l}{\;}\\{+2}\end{array}}},其中n=n\begin{array}{l}{\;}\\{11}\end{array}+n\begin{array}{l}{\;}\\{12}\end{array}+n\begin{array}{l}{\;}\\{21}\end{array}+n\begin{array}{l}{\;}\\{22}\end{array}$.
獨(dú)立性檢驗(yàn)臨界值表:
P(X2≥k0)  
0.25
 
0.15
 
0.10
 
0.05
 
0.025
k0 
1.323
 
2.072
 
2.706
 
3841
 
5.024

分析 (Ⅰ)按是否能做到光盤分層從45份女生問卷中抽取了9份問卷,則抽取到做不到光盤的人數(shù)為6人,能做到光盤的人數(shù)為3人,由題意ξ的可能取值為0,1,2,3.分別求出相應(yīng)的概率,由此能求出ξ的分布列和Eξ.
(Ⅱ)求出X2=$\frac{100}{33}≈3.03$,由2.706<3.03<3.841,得到能在犯錯誤的概率不超過0.10的前提下認(rèn)為良好“光盤行動”與性別有關(guān),即精確值應(yīng)為0.10.

解答 解:(Ⅰ)按是否能做到光盤分層從45份女生問卷中抽取了9份問卷,
則抽取到做不到光盤的人數(shù)為:30×$\frac{9}{45}$=6人,能做到光盤的人數(shù)為:15×$\frac{9}{45}$=3人,
由題意ξ的可能取值為0,1,2,3.
P(ξ=0)=$\frac{{C}_{6}^{4}}{{C}_{9}^{4}}$=$\frac{5}{42}$,
P(ξ=1)=$\frac{{C}_{6}^{3}{C}_{3}^{1}}{{C}_{9}^{4}}$=$\frac{10}{21}$,
P(ξ=2)=$\frac{{C}_{6}^{2}{C}_{3}^{2}}{{C}_{9}^{4}}$=$\frac{5}{14}$,
P(ξ=3)=$\frac{1}{21}$,
ξ的分布列為:

ξ0123
P$\frac{5}{42}$$\frac{10}{21}$$\frac{5}{14}$$\frac{1}{21}$
∴Eξ=$0×\frac{5}{42}+1×\frac{10}{21}+2×\frac{5}{14}+3×\frac{1}{21}$=$\frac{4}{3}$.
(Ⅱ)X2=$\frac{100(45×15-30×10)^{2}}{55×45×25×75}$=$\frac{100}{33}≈3.03$,
∵2.706<3.03<3.841,
∴能在犯錯誤的概率不超過0.10的前提下認(rèn)為良好“光盤行動”與性別有關(guān),即精確值應(yīng)為0.10.

點(diǎn)評 本題考查離散型隨機(jī)變量的分布列及數(shù)學(xué)期望的求法,考查獨(dú)立檢驗(yàn)的應(yīng)用,是中檔題,解題時(shí)要認(rèn)真審題,注意排列組合知識的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知單位向量$\overrightarrow{{e}_{1}}$與$\overrightarrow{{e}_{2}}$的夾角為α,且cosα=-$\frac{1}{5}$,若$\overrightarrow{a}$=2$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,$\overrightarrow$=$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$,則$\overrightarrow{a}•\overrightarrow$=( 。
A.-2B.2C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.曲線y=$\frac{1}{x}$過P(4,$\frac{1}{4}$)的切線方程為( 。
A.x+16y-8=0B.16x+y-8=0C.x-16y+8=0D.x+16y+8=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若y=0是曲線y=x3+bx+c的一條切線,則($\frac{3}$)3+($\frac{c}{2}$)2=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知0≤x≤$\frac{π}{2}$,求函數(shù)y=sinx-2asinx的最大值M(a)與最小值m(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)$f(x)=lnx-\frac{1}{4}x+\frac{3}{4x}-1$,g(x)=x2-2bx+4,若對任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),則實(shí)數(shù)b的取值范圍是[$\frac{17}{8}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在平面直角坐標(biāo)系中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1+t}\\{y=t-3}\end{array}\right.$(t為參數(shù)),在以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為ρ=$\frac{2cosθ}{si{n}^{2}θ}$
(1)求曲線C的直角坐標(biāo)方程和直線l的普通方程;
(2)若直線l與曲線C相交于A,B兩點(diǎn),求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.觀察下列等式1=12,12-22=-3,12-22+32=6,12-22+32-42=-10照此規(guī)律,第100個(gè)等式12-22+32-42+…-1002=-5050.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若實(shí)數(shù)x,y滿足條件$\left\{\begin{array}{l}x-y≤0\\ x+y≥-2\\ x-2y≥-2\end{array}\right.$,則z=2x+y的最大值是(  )
A.10B.8C.6D.4

查看答案和解析>>

同步練習(xí)冊答案