9.已知函數(shù)f(x)是以3為周期的偶函數(shù),且f(5)=2,則f(4)的值為(  )
A.2B.-2C.1D.-1

分析 由函數(shù)的周期性和奇偶性得f(2)=f(5)=2,由此能求出f(4)=f(-2)=f(2)=2.

解答 解:∵函數(shù)f(x)是以3為周期的偶函數(shù),且f(5)=2,
∴f(2)=f(5)=2,
∴f(4)=f(-2)=f(2)=2.
故選:A.

點評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認真審題,注意函數(shù)性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知正六棱柱的底面邊長和側(cè)棱長相等,體積為96$\sqrt{3}$,其三視圖中的俯視圖如圖所示,則其左視圖的面積是(  )
A.$8\sqrt{3}$B.16C.$16\sqrt{3}$D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=ln$\frac{x+1}{x-1}$.
(1)求函數(shù)f(x)的定義域,并判斷函數(shù)f(x)的奇偶性;
(2)對于x∈[2,6],f(x)>ln$\frac{m}{(x-1)(7-x)}$恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.雙曲線${x^2}-\frac{y^2}{m^2}=1$與橢圓$\frac{x^2}{9}+\frac{y^2}{5}=1$的焦點相同,則雙曲線的離心率是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)a=lg0.4,b=20.4,c=0.45,則( 。
A.c>b>aB.b>c>aC.a>c>bD.a>b>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知${({\frac{2}{3}})^y}={({\frac{3}{2}})^{{x^2}+1}}$,則y的最大值是( 。
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=ax2+bx+c(a>0),且f(1)=-$\frac{a}{2}$.
(1)求證:函數(shù)f(x)有兩個不同的零點;
(2)設(shè)x1,x2是函數(shù)f(x)的兩個不同的零點,求|x1-x2|的取值范圍;
(3)求證:函數(shù)f(x)在區(qū)間(0,2)內(nèi)至少有一個零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=(x+3)(x+2)(x+1)x(x-1)(x-2)(x-3),則f′(1)的值為( 。
A.24B.48C.-48D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知f(x)=$\frac{1}{3}{x}^{3}+{x}^{2}$+ax與g(x)=$\frac{x}{{e}^{x}}$
(1)若f(x)在區(qū)間[1,+∞)單調(diào)遞增,求a的最小值;
(2)求函數(shù)g(x)的在區(qū)間[-1,2]上的最大值與最小值;
(3)對?x1∈[-1,2],?x2∈[-1,2],使g(x1)=f′(x2)成立,求a的范圍.

查看答案和解析>>

同步練習(xí)冊答案