9.已知A={y|y=log2x,x>1},B={y|y=$\frac{1}{x}$,x>2},則A∪B=( 。
A.[$\frac{1}{2}$,+∞)B.(0,$\frac{1}{2}$)C.(0,+∞)D.(-∞,0]∪[$\frac{1}{2}$,+∞)

分析 分別求出集合A、B的范圍,從而求出A、B的并集即可.

解答 解:∵A={y|y=log2x,x>1}={y|y>0},
B={y|y=$\frac{1}{x}$,x>2}={y|0<y<$\frac{1}{2}$},
則A∪B={y|y>0},
故選:C.

點(diǎn)評 本題考查了集合的并集的運(yùn)算,考查對數(shù)函數(shù)的性質(zhì)以及函數(shù)的值域問題,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.偶函數(shù)f(x)(x∈R)滿足:f(-4)=f(2)=0,且在區(qū)間[0,3]與[3,+∞)上分別遞減,遞增,則不等式x•f(x)<0的解集為(-∞,-4)∪(-2,0)∪(2,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=$\left\{\begin{array}{l}{log_2}^x\;\;\;\;x>0\\{3^x}+1\;\;\;x≤0\end{array}$,則$f(f(\frac{1}{8}))$的值是( 。
A.$\frac{1}{27}$B.$\frac{28}{27}$C.$-\frac{28}{27}$D.$-\frac{1}{27}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)f(x)=log3$\frac{x+a}{x-1}$(a>0)是奇函數(shù),則a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.冪函數(shù)f(x)過點(diǎn)(2,$\frac{1}{2}$),則f(x)的單調(diào)遞減區(qū)間是(  )
A.(0,+∞)B.(-∞,0)C.(-∞,0),(0,+∞)D.(-∞,0)∪(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.2和8的等比中項有4和-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.若實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x+3y-3≥0}\\{2x-y-3≤0}\\{x-y+1≥0}\end{array}\right.$求x+y的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知直線l:ay=(3a-1)x-1,無論a為何值,直線l總過定點(diǎn)(-1,-3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)F1,F(xiàn)2分別為橢圓$\frac{x^2}{25}+\frac{y^2}{16}=1$的左右焦點(diǎn),P為橢圓上一點(diǎn),若△F1F2P為直角三角形,該三角形的面積為$\frac{48}{5}$.

查看答案和解析>>

同步練習(xí)冊答案