【題目】已知函數(shù) ()在定義域內(nèi)僅有唯一零點(diǎn).
(1)若對(duì),不等式恒成立,求實(shí)數(shù)的最大值;
(2)設(shè)函數(shù),對(duì)于, ,且,求證: .
【答案】(1);(2)見(jiàn)解析.
【解析】試題分析:(1)直接求導(dǎo)即可得到函數(shù)的增減性,只有一個(gè)零點(diǎn),說(shuō)明其極值為零,即可得到答案;
(2)通過(guò)對(duì)不等式的變形化簡(jiǎn),得到的形式,此時(shí)自然運(yùn)用換元法得到一個(gè)新的不等式,再利用導(dǎo)數(shù)來(lái)對(duì)其進(jìn)行證明即可。
試題解析:
(1)由(),得.
令,解得.
顯然,即在的定義域內(nèi),
于是當(dāng)時(shí), ;當(dāng)時(shí), ,
所以在區(qū)間上遞增,在區(qū)間上遞減,則.
因?yàn)?/span>在定義域內(nèi)僅有唯一零點(diǎn),所以,即,
從而.
于是不等式恒成立,即恒成立.
①當(dāng)時(shí),取,得,而,所以不恒成立,即不滿足條件;
②當(dāng)時(shí),令,則,
令,得, .
(i)若,即時(shí),當(dāng)時(shí), ,則在上遞增,
從而恒有,即在上恒成立,即滿足條件.
(ii)若,即時(shí),當(dāng), ,則遞減,
于是當(dāng)時(shí), ,即在不恒成立,即不滿足條件.
綜上得,即.
(2)由,得,不妨令,
欲證 ,
只需證,
即證,
只需證,
只需證,
即證,
即證.
令(),則只需證,即.
令,則,
于是在上遞增,從而,
即,即,所以原不等式成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在平面直角坐標(biāo)系中, 是坐標(biāo)原點(diǎn),動(dòng)圓經(jīng)過(guò)點(diǎn),且與直線相切.
(1)求動(dòng)圓圓心的軌跡方程;
(2)過(guò)的直線交曲線于兩點(diǎn),過(guò)作曲線的切線,直線交于點(diǎn),求的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|x-a|.
(1)若不等式f(x)≤3的解集為{x|-1≤x≤5},求實(shí)數(shù)a的值;
(2)在(1)的條件下,若f(x)+f(x+5)≥m對(duì)一切實(shí)數(shù)x恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如下圖,已知橢圓的上頂點(diǎn)為,左、右頂點(diǎn)為,右焦點(diǎn)為, ,且的周長(zhǎng)為14.
(I)求橢圓的離心率;
(II)過(guò)點(diǎn)的直線與橢圓相交于不同兩點(diǎn),點(diǎn)N在線段上.設(shè),試判斷點(diǎn)是否在一條定直線上,并求實(shí)數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某品牌手機(jī)銷售商今年1,2,3月份的銷售量分別是1萬(wàn)部,1.2萬(wàn)部,1.3萬(wàn)部,為估計(jì)以后每個(gè)月的銷售量,以這三個(gè)月的銷售為依據(jù),用一個(gè)函數(shù)模擬該品牌手機(jī)的銷售量y(單位:萬(wàn)部)與月份x之間的關(guān)系,現(xiàn)從二次函數(shù) 或函數(shù) 中選用一個(gè)效果好的函數(shù)行模擬,如果4月份的銷售量為1.37萬(wàn)件,則5月份的銷售量為__________萬(wàn)件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類的,,,四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:
甲說(shuō):“是或作品獲得一等獎(jiǎng)”;
乙說(shuō):“作品獲得一等獎(jiǎng)”;
丙說(shuō):“,兩項(xiàng)作品未獲得一等獎(jiǎng)”;
丁說(shuō):“是作品獲得一等獎(jiǎng)”.
若這四位同學(xué)中只有兩位說(shuō)的話是對(duì)的,則獲得一等獎(jiǎng)的作品是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)滿足下列條件:在定義域內(nèi)存在,使得成立,則稱函數(shù)具有性質(zhì);反之,若不存在,則稱函數(shù)不具有性質(zhì).
(Ⅰ)證明:函數(shù)具有性質(zhì),并求出對(duì)應(yīng)的的值;
(Ⅱ)試分別探究形如①()、②(且)、③(且)的函數(shù),是否一定具有性質(zhì)?并加以證明.
(Ⅲ)已知函數(shù)具有性質(zhì),求的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】編號(hào)為A,B,C,D,E的5個(gè)小球放在如圖所示的5個(gè)盒子里,要求每個(gè)盒子只能放1個(gè)小球,且A球不能放在1,2號(hào)盒子里,B球必須放在與A球相鄰的盒子中,求不同的放法有多少種?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線與橢圓相交于兩點(diǎn),與軸, 軸分別相交于點(diǎn)和點(diǎn),且,點(diǎn)是點(diǎn)關(guān)于軸的對(duì)稱點(diǎn), 的延長(zhǎng)線交橢圓于點(diǎn),過(guò)點(diǎn)分別做軸的垂線,垂足分別為.
(1) 若橢圓的左、右焦點(diǎn)與其短軸的一個(gè)端點(diǎn)是正三角形的三個(gè)頂點(diǎn),點(diǎn)在橢圓上,求橢圓的方程;
(2)當(dāng)時(shí),若點(diǎn)平分線段,求橢圓的離心率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com