7.在△ABC中,A=$\frac{π}{3}$,b=2,其面積S=2$\sqrt{3}$,則△ABC的外接圓的直徑為( 。
A.8B.4C.$\frac{8\sqrt{3}}{3}$D.$\frac{4\sqrt{3}}{3}$

分析 先根據(jù)三角形面積公式求得c邊的長,進(jìn)而利用余弦定理求得b,最后根據(jù)正弦定理,求得三角形外接圓的直徑.

解答 解:在△ABC中,∵S=$\frac{1}{2}$bcsinA=2,
∴$\frac{1}{2}$×2×c×sin60°=2$\sqrt{3}$,
∴c=4,
∴a2=b2+c2-2bccosA=4+16-2×2×4×cos60°,
∴a2=12,a=2$\sqrt{3}$.
∴△ABC的外接圓的直徑等于$\frac{a}{sinA}$=$\frac{2\sqrt{3}}{\frac{\sqrt{3}}{2}}$=4.
故選:B.

點(diǎn)評 本題主要考查了正弦定理和余弦定理的應(yīng)用.作為正弦定理和余弦定理的變形公式也應(yīng)熟練掌握,以便做題時方便使用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)f(x)=$\left\{\begin{array}{l}{x^2}+2x+2\\-{x^2}\end{array}\right.\begin{array}{l},{x≤0}\\,{x>0}\end{array}$若實(shí)數(shù)a滿足f(f(a))=2,則實(shí)數(shù)a的所有取值的和為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知sinα=$\frac{1}{3}$,α是第二象限角,則sin4α=-$\frac{56\sqrt{2}}{81}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.定義函數(shù)y=f(x),x∈I,若存在常數(shù)M,對于任意x1∈I,存在唯一的x2∈I,使得$\frac{f({x}_{1})+f({x}_{2})}{2}$=M,則稱函數(shù)f(x)在I上的“均值”為M,已知f(x)=log2x,x∈[1,22017],則函數(shù)f(x)=log2x在∈[1,22017]上的“均值”為$\frac{2017}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)集合U={1,2,3,4,5},M={1,2,5},N={2,3,5},則M∪(∁UN)=(  )
A.{1}B.{1,2,3,5}C.{1,2,4,5}D.{1,2,3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在等差數(shù)列{an}中,a2=4,a1+a5=14,
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)求數(shù)列{an}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知f(x)=$\left\{\begin{array}{l}{\frac{1}{2}x+1,x≤0}\\{-(x-1)^{2},x>0}\end{array}\right.$,使f(x)≥-1成立的x的取值范圍是[-4,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知定義在R上的函數(shù)y=f(x)對任意x都滿足f(x+1)=-f(x),且當(dāng)0≤x<1時,f(x)=x,則函數(shù)g(x)=f(x)-ln|x|的零點(diǎn)個數(shù)為3個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在△ABC中,已知c=13,cosA=$\frac{5}{13}$
(1)若a=36,求sinC的值
(2)若△ABC的面積為6,分別求a、b的值.

查看答案和解析>>

同步練習(xí)冊答案