7.將函數(shù)y=2sin(2x+$\frac{π}{3}$)的圖象向右平移$\frac{1}{4}$個周期后,所得圖象對應(yīng)的函數(shù)為y=2sin(2x-$\frac{π}{6}$).

分析 求出函數(shù)的周期,利用三角函數(shù)圖象平移求解即可.

解答 解:函數(shù)y=2sin(2x+$\frac{π}{3}$)的周期為:π,將函數(shù)y=2sin(2x+$\frac{π}{3}$)的圖象向右平移$\frac{1}{4}$個周期后,即向右平移$\frac{π}{4}$,可得函數(shù)y=2sin(2x-$\frac{π}{2}$+$\frac{π}{3}$)=2sin(2x-$\frac{π}{6}$).
故答案為:y=2sin(2x-$\frac{π}{6}$).

點評 本題考查函數(shù)的周期以及三角函數(shù)圖象的變換,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個頂點為A(2,0),離心率為$\frac{\sqrt{2}}{2}$.直線y=k(x-1)與橢圓C交于不同的兩點M,N.
(1)求橢圓C的方程;  
(2)當(dāng)△AMN的面積為$\frac{4\sqrt{7}}{9}$時,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知D為△ABC的邊AB上的一點,且$\overrightarrow{CD}$=$\frac{1}{3}$$\overrightarrow{AC}$+λ•$\overrightarrow{BC}$,則實數(shù)λ的值為( 。
A.$\frac{2}{3}$B.$-\frac{2}{3}$C.$\frac{4}{3}$D.$-\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個頂點為A(0,1),離心率為$\frac{\sqrt{2}}{2}$,過點B(0,-2)及左焦點F1的直線交橢圓于C,D兩點,右焦點為F2
(1)求橢圓的方程;
(文科)(2)求弦長CD.
(理科)(2)求△CDF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)=x3+3x2-1在x=( 。┨幦〉脴O小值.
A.3B.2C.0D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)f(x)按照下述方法定義:當(dāng)x≤2時,f(x)=-x2+2x;當(dāng)x>2時,f(x)=$\frac{1}{2}$(x-2)2,方程f(x)=$\frac{1}{2}$的所有實數(shù)根之和是( 。
A.2B.3C.5D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=x2+bx+c(b,c為常數(shù)),對任意α∈R、β∈R,恒有f(sinα)≥0,且f(2+cosβ)≤0
(1)求f(1)的值
(2)求證:c≥3
(3)若f(sinα)的最大值為8,求f(x)的表達式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}={1^{\;}}({a,b>0})$的左、右焦點分別為F1,F(xiàn)2,過F2的直線與雙曲線C的右支相交于P,Q兩點,若$\overrightarrow{P{F_2}}=3\overrightarrow{{F_2}Q}$,若△PQF1是以Q為頂角的等腰三角形,則雙曲線的離心率e=( 。
A.3B.2C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)y=log5(1-x)的定義域是( 。
A.(1,+∞)B.(-∞,1)C.(-1,1)D.(-∞,1]

查看答案和解析>>

同步練習(xí)冊答案