2.已知x,y滿足(x-1)2+y2=16,則x2+y2的最小值為9.

分析 由圓的參數(shù)方程得$\left\{\begin{array}{l}{x=1+4cosα}\\{y=4sinα}\end{array}\right.$,0≤α<2π,由此利用三角函數(shù)性質(zhì)能求出x2+y2的最小值.

解答 解:∵x,y滿足(x-1)2+y2=16,
∴$\left\{\begin{array}{l}{x=1+4cosα}\\{y=4sinα}\end{array}\right.$,0≤α<2π,
∴x2+y2=(1+4cosα)2+(4sinα)2=1+8cosα+16cos2α+16sin2α=8cosα+17,
∴當(dāng)cosα=-1時(shí),x2+y2的最小值為9.
故答案為:9.

點(diǎn)評(píng) 本題考查代數(shù)式的最小值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意圓的參數(shù)方程及三角函數(shù)的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,且Sn=n2+n+1,n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.生產(chǎn)過程有4道工序,每道工序需要安排一人照看,現(xiàn)從甲、乙、丙等6名工人中安排4人分別照看一道工序,第一道工序安排乙做,第四道工序只能從甲、丙兩人中安排1人,則不同的安排方案有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.10本不同的書
(1)按2:2:2:4分成四堆有多少種不同的分法?
(2)按2:2:2:4分給甲、乙、丙、丁四個(gè)人有多少種不同的分法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知直線l:ax-y+2=0與圓M:x2+y2-4y+3=0的交點(diǎn)為A、B,點(diǎn)C是圓M上一動(dòng)點(diǎn),設(shè)點(diǎn)P(0,-1),則|$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$|的最大值為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知復(fù)數(shù)z=$\frac{2016+2015i}{2015-2016i}$+1,則|z|2016=( 。
A.22016B.21008C.-21008D.-22016

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)f(t)=$\sum_{n=1}^{10}{{t^{n-1}}C_{10}^n}$,則f(-3)=-341.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知兩圓C1:x2+y2-2x-6y-1=0,C2:x2+y2-10x-12y+45=0
(1)求證:圓C1和圓C2相交;
(2)求圓C1和圓C2的公共弦所在直線方程和公共弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,多面體ABCDEF中,底面ABCD是邊長(zhǎng)為2a的菱形,側(cè)面ADEF為矩形,且AF=$\frac{1}{2}$AD,∠ABC=60°,AF⊥平面ABCD,點(diǎn)G和H分別是BC、BF上的點(diǎn).
(1)若$\frac{BG}{BC}$=$\frac{BH}{BF}$,求證:BD⊥GH;
(2)若BG=2GC,在線段BF上是否存在一點(diǎn)H,使直線GH與平面ACE所成角為30°,若存在,求出點(diǎn)H的位置,若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案