在銳角△ABC中,若2sinB=
3
b,a=1,則∠A=
 
考點:正弦定理
專題:解三角形
分析:利用正弦定理即可得出.
解答: 解:∵2sinB=
3
b,∴
b
sinB
=
2
3

由正弦定理可得:
a
sinA
=
b
sinB
,
sinA=
asinB
b
=
3
2
=
3
2
,
而a<b,
∴A為銳角,∴A=
π
3

故答案為:
π
3
點評:本題考查了正弦定理的應用,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知集合A={x|-5≤2x-1≤9},B={x|m+1≤x≤2m-1},若A∩B=B,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知m,n是兩條直線,α,β是兩個平面,有以下命題:
①m,n相交且都在平面α,β外,m∥α,m∥β,n∥α,n∥β,則α∥β;
②若m∥α,m∥β,則α∥β;
③若m∥α,n∥β,m∥n,則α∥β.
其中正確命題的個數(shù)是( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,|
AB
|=3,|
AC
|=2,點D滿足2
BD
=3
DC
,∠BAC=60°,則
AD
BC
=(  )
A、-
8
5
B、
9
5
C、
8
5
D、-
9
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知正方體ABCD-A1B1C1D1棱長為4,點H在棱AA上,且HA1=1.點E,F(xiàn)分別為棱B1C,C1C的中點,P是側(cè)面BCC1B1內(nèi)一動點,且滿足PE⊥PF.則當點P運動時,|HP|2的最小值是( 。
A、7-
2
B、27-6
2
C、51-14
2
D、14-2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

袋子里裝有大小相同,重量相等的5個紅球和5個白球,用A表示第一個摸出的球是紅球,B表示第二個摸出的球是紅球,在下列條件下,問事件A與B是否為相互獨立事件?
(1)第一個摸出的球不放回;
(2)第一個摸出的球要放回.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,點P在正方體ABCD-A1B1C1D1的面對角線BC1上運動,則下列四個結(jié)論:
①三棱錐A-D1PC的體積不變;②A1P∥平面ACD1;③DP⊥BC1;④平面PDB1⊥平面ACD1.其中正確的結(jié)論的是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若曲線C1:x2+y2-2x=0與曲線C2:y(y-mx-m)=0有三個不同的交點,則實數(shù)m的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

利用計算機產(chǎn)生0~1之間的均勻隨機數(shù)a,則事件“4a-1<0”發(fā)生的概率為( 。
A、
1
2
B、
1
3
C、
1
4
D、
2
3

查看答案和解析>>

同步練習冊答案