13.在△ABC的內(nèi)角A,B,C對應(yīng)的邊分別是a,b,c,已知$\frac{sinA}{a}=\frac{{\sqrt{3}cosB}}$,
(1)求B;
(2)若b=2,△ABC的周長為2$\sqrt{3}$+2,求△ABC的面積.

分析 (1)利用正弦定理可得tanB,即可得出;
(2)利用余弦定理、三角形周長、三角形面積計算公式即可得出.

解答 解:(1)由正弦定理可得:$\frac{sinA}{a}=\frac{{\sqrt{3}cosB}}$=$\frac{sinB}$,
∴tanB=$\sqrt{3}$,
∵0<B<π,
∴B=$\frac{π}{3}$;
(2)由余弦定理可得b2=a2+c2-2accosB,
即a2+c2-ac=4,
又b=2,△ABC的周長為2$\sqrt{3}$+2,
∴a+c+b=2$\sqrt{3}$+2,
即a+c=2$\sqrt{3}$,
∴ac=$\frac{8}{3}$,
∴S△ABC=$\frac{1}{2}$acsinB=$\frac{1}{2}$×$\frac{8}{3}$×$\frac{\sqrt{3}}{2}$=$\frac{2\sqrt{3}}{3}$.

點評 本題考查了正弦定理、余弦定理、三角形周長、三角形面積計算公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

3.求下列各式的值.
(1)$\root{4}{81×\sqrt{{9}^{\frac{2}{3}}}}$;
(2)($\root{3}{25}$-$\sqrt{125}$)÷$\root{4}{5}$;
(3)$\frac{{a}^{2}}{\sqrt{a}•\root{3}{{a}^{2}}}$(a>0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.(1-2x)5 (1+3x)4展開式中按x的升冪排列的第三項的系數(shù)是( 。
A.-23B.-24C.-25D.-26

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.不等式3${\;}^{{x^2}+2x-4}}$≥$\frac{1}{3}$的解集為{x|x≤-3或x≥1}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知數(shù)列{an}的前n項和Sn=$\frac{n(3n-1)}{2}$,若a1,a4,am成等比數(shù)列,則m=( 。
A.19B.34C.100D.484

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.在60°的二面角α-l-β的棱l上有兩點A,B,直線AC,BD分別在這個二面角的兩個半平面內(nèi),AC⊥l.BD⊥l,若AB=4,AC=6,BD=8,則CD的長為2$\sqrt{17}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.一個大型噴水池的中央有一個強大噴水柱,為了測量噴水柱噴出的水柱的高度,某人在噴水柱正西方向的點A測得水柱頂端的仰角為45°,沿點A向北偏東30°前進100米到達點B,在B點測得水柱頂端的仰角為30°(點A、B處和水柱底端在同一水平面上),則水柱的高度是( 。
A.50mB.100mC.120mD.150m

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.命題P:函數(shù)f(x)=$\left\{\begin{array}{l}{x^2}+(4a-3)x+3a,x<0\\{log_a}(x+1)+1,x≥0\end{array}$(a>0,且a≠1)在R上為單調(diào)遞減函數(shù),命題q:?x∈[0,$\frac{{\sqrt{2}}}{2}$],x2-a≤0恒成立,若命題p∧q為假,p∨q為真,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.由數(shù)字1,2組成的三位數(shù)的個數(shù)是6(用數(shù)字作答).

查看答案和解析>>

同步練習冊答案