13.用數(shù)學(xué)歸納法證明:(1+2+3+…+n)(1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$)≥n2.(n∈N+

分析 先驗(yàn)證n=1時(shí)結(jié)論成立,假設(shè)n=k時(shí)結(jié)論成立,用n表示出1+2+3+…+k,1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{k}$,代入當(dāng)n=k+1時(shí)的式子進(jìn)行整理即可得出結(jié)論.

解答 證明:當(dāng)n=1時(shí),1×1=12,結(jié)論顯然成立,
假設(shè)n=k時(shí)結(jié)論成立,即(1+2+3+…+k)(1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{k}$)≥k2
∴1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{k}$≥$\frac{{k}^{2}}{1+2+3+…+k}$=$\frac{2k}{k+1}$.
∴(1+2+3+…+k+(k+1))(1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{k}$+$\frac{1}{k+1}$)=(1+2+3+…+k)(1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{k}$)+(1+2+3+…+k)×$\frac{1}{k+1}$+(k+1)(1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{k}$)+1.
≥k2+$\frac{k(k+1)}{2}×\frac{1}{k+1}$+(k+1)×$\frac{2k}{k+1}$+1=k2+$\frac{5k}{2}$+1>(k+1)2
∴當(dāng)n=k+1時(shí),結(jié)論成立.
∴(1+2+3+…+n)(1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$)≥n2.(n∈N+

點(diǎn)評(píng) 本題考查了數(shù)學(xué)歸納法的應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.過(guò)拋物線y=ax2(a>0)的焦點(diǎn)F作圓C:x2+y2-8y+15=0的切線,切點(diǎn)分別為M、N,已知直線MN:3y-11=0.
(1)求實(shí)數(shù)a的值;
(2)直線l經(jīng)過(guò)點(diǎn)F,且與拋物線交于點(diǎn)A、B,若以AB為直徑的圓與圓C相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.復(fù)數(shù)z滿足$\frac{z}{1-z}$=2i,則z的模為( 。
A.$\frac{2\sqrt{5}}{5}$B.$\frac{4}{5}$C.$\frac{4\sqrt{5}}{5}$D.$\frac{16}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.某大學(xué)為了解某專業(yè)新生的綜合素養(yǎng)情況,從該專業(yè)新生中隨機(jī)抽取了2n(n∈N*)名學(xué)生,再?gòu)倪@2n名學(xué)生中隨機(jī)選取其中n名學(xué)生參加科目P的測(cè)試.另n名學(xué)生參加科目Q的測(cè)試.每個(gè)科目成績(jī)分別為1分,2分,3分,4分,5分.兩個(gè)科目測(cè)試成績(jī)整理成如圖統(tǒng)計(jì)圖,已知在科目P測(cè)試中,成績(jī)?yōu)?分的學(xué)生有8人.
(Ⅰ)分別求在兩個(gè)科目中成績(jī)?yōu)?分的學(xué)生人數(shù)
〔Ⅱ)根據(jù)統(tǒng)計(jì)圖,分別估計(jì):
(i)該專業(yè)新生在這兩個(gè)科目上的平均成績(jī)的高低;
(ii)該專業(yè)新生在這兩個(gè)科目中,哪個(gè)科目的個(gè)體成績(jī)差異較為明顯.(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=$\frac{2}{x}$-alnx,其中a∈R.
(Ⅰ)當(dāng)a=-1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)若函數(shù)g(x)=x2+f(x)在區(qū)間(0,1)內(nèi)有極值,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知集合A={x|x2-4x≤0},B={x|x>1},則A∩B=( 。
A.{x|x>4或x<0}B.{x|1<x<4}C.{x|1<x≤4}D.{x|1≤x≤4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知集合A={x|y=lg(4-x2)},集合B={x|2x<1},則A∩B=( 。
A.{x|x<0}B.{x|-2<x<2}C.{x|-2<x<0}D.{x|x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.如圖,在圓心角為120°的扇形OAB中,以O(shè)A為直徑作一個(gè)半圓,若在扇形OAB內(nèi)隨機(jī)取一點(diǎn),則此點(diǎn)取自陰影部分的概率是(  )
A.$\frac{5}{8π}$B.$\frac{5}{8}$C.$\frac{3}{8}$D.$\frac{3}{8π}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知等差數(shù)列{an}的首項(xiàng)a1=1,公差d≠0,Sn為數(shù)列{an}的前n項(xiàng)和.若向量$\overrightarrow m$=({a1,a3),$\overrightarrow n$=(a13,-a3),且$\overrightarrow m$•$\overrightarrow n$=0,則$\frac{2{S}_{n}+16}{{a}_{n}+3}$的最小值為( 。
A.4B.3C.2$\sqrt{3}$-2D.$\frac{9}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案